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Abstract

When many motor proteins work together, they exhibit rather fascinating dynamics. In this

work we theoretically study the dynamics of a-polar actin-myosin II systems. Such a-polar

systems will show bidirectional dynamics that is composed of directional section. Those

directional section have a time length (known as the characteristic reversal time, τrev) that,

before our work, was believed to have an exponential dependent on the size of the system

(the number of motors) [1]. However, in a recent experimental work [2], it was found that

there is no such exponential dependence. In our work, we suggest that the elasticity of the

actin filaments is a key concept that is needed to be taken into account in such systems. We

present an elastic ratchet model to describe our system and study it both analytically and

numerically [3]. By introducing this elasticity, the exponential dependent of the characteristic

reversal time is eliminated [3]. Further on, we predict that those elasticity effects will cause

a broken symmetry dynamics in certain spatially symmetric configurations of actin-myosin

II systems [4]. That is, we show how perfectly a-polar actin-myosin II systems, with specific

internal configurations show a bidirectional dynamics with a non vanishing drift velocity.
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Chapter 1

Introduction

1.1 The cell’s cytoskeleton and motor proteins

The cytoskeleton is a protein scaffold contained within the cytoplasm. It can be found

in most eukaryotic and prokaryotic cells [6, 7]. The eukaryotic cytoskeleton (see Fig. 1.1)

consists of three major classes of filaments (see Fig. 1.2): (i) Microtubules which are pipe-

like, rigid, hollow, thick structures [8, 9]. The microtubules, like actin filaments, are polar.

(ii) Actin filaments which are cable-like, relatively flexible and thin [5]. They are polar and

are found mainly in the cortex of the cell. (iii) Intermediate filaments which are rope-like

and relatively flexible, the diameter of those filaments is between the diameter of the actin

and the microtubule [10–12]. In addition to those three major classes of filaments, the

cytoskeleton contains a large collection of accessory proteins that bind to the filaments and

either crosslink them together or crosslink the filaments to other cellular structures, such

as the plasma membrane, membrane-bound organelles, and chromosomes. The cytoskeleton

is a dynamic structure that maintains the cell’s structure, this is especially important in

animal cells, which have no cell walls and whose fluid-like plasma membrane are unable, on

their own, to support complex cellular morphologies.
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Figure 1.1: The eukaryotic cytoskeleton. Actin filaments are shown in red, microtubules in

green, and the nuclei in blue. Figure taken from the U.S Department of Health and Human

Services.

In addition to determining the cell’s structure, the cell’s cytoskeleton serves as tracks

for the motor proteins (MPs), which are molecular machines that convert chemical energy

derived from ATP hydrolysis into mechanical work. The MPs are the driving force behind

most active transports in the cell. They “walk” on the microtubule and actin cytoskeleton

and pull vesicles or organelles across the cell [13].

The structure of myosin II is similar for many different types of MPs and consists three

major parts:

1. Motor domain (head) - This part is responsible for the interaction with the track and

the ATP hydrolysis [14].

2. Neck - This part acts as a lever that amplifies the motion of the head [15].

3. Tail - This acts as a binding site for the cargo.

The rotating crossbridge model, first motivated by the discovery of myosin crossbridges
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Figure 1.2: The eukaryotic cytoskeleton filaments. (A) The microtubules are pipe-like, rigid,

hollow, thick and polar. (B) The actin filaments are cable-like, relatively flexible, thin and

polar. (C) The intermediate filaments are rope-like and flexible, and have an intermediate

thickness. Image taken from Science Prof Online

in 1957 [16], continues to provide the framework within which the structural, biochemical,

and mechanical properties of MPs, not just myosin, can be understood. This model provides

a general mechanism for the contraction of muscles, the beating of cilia and flagella, the

movement of organelles, and the segregation of the chromosomes. The rotating crossbridge

model consists of four cyclic states illustrated in Fig. 1.3.

MPs can be divided into two groups, the members of the first group perform work alone

or in groups of small numbers. Dynein and kinesin type motors which use microtubules as

track belong to this group of MPs. An example for the work performed by such motors can

be seen in the intracellular transport of cargoes which is achieved mainly by the action of
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Figure 1.3: The rotating crossbridge model. (A) The binding of myosin to the actin filament

catalyzes the release of phosphate from the motor domain and induces the formation of a

highly strained ADP state. (B) The strain drives the neck domain, moving the load through

the working distance. (C) Following ADP release, ATP binds to the motor domain and

causes dissociation of myosin from the actin filament. (D) While dissociated, the crossbridge

recovers to its initial conformation, and this recovery moves the motor towards its next

binding site on the filament. T=ATP, D=ADP, P=Pi. Figure made by OP designs.
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Figure 1.4: The sarcomere is composed from thick myosin bundles and thin actin filaments.

The two states are shown, the relaxed state, the upper part of the picture, and the contracted

state, the lower part of the picture, which is caused as a result of the relative movement

between the myosin bundles and the actin filaments. Image taken from Bora Zivkovic’s

lecture notes.

individual motors that propagate along the cytoskeleton tracks in a direction determined by

the intrinsic polarity of the filaments [38]. To the other group of MPs-the group on which we

will focus in our work-belong myosin type motors which use actin filaments as tracks. The

members of this group perform work in groups of large numbers and show characteristics of

a complex system1. Examples for the cooperative work of MPs that belong to the second

group can be seen in the anatomical unit of a muscle, the sarcomere (see Fig. 1.4), that

contains thousands of myosin motors forming a thick filament and acting together, pulling on

attached actin filaments and causing them to slide against each other [39]. Furthermore, MPs

of the second kind form and close the contraction ring in the mitosis process, see Figs. 1.5,

1.6.

1The term complex system in this context refers to a system that as a whole, exhibit one or more properties

not obvious from the properties of its individual parts.
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1.2 In vitro motility assay

An in vitro motility assay is a technique in which the motility of purified MPs along purified

cytoskeletal filaments is reconstituted in cell-free conditions. Then, the dynamics is studied,

usually by the assistant of fluorescence. An important development of this technique, and an

almost in vitro motility assay, was done in 1983 by Shetz and Spudich [40], were the dynamics

of beads coated with purified myosin upon actin cables in the cytoplasm of the alga Nitella

was visualized using fluorescence. The following big development has been published in 1985

by Spudich et al. [41], where the first completely reconstituted assay in which motor-coated

beads were shown to move along the actin filaments made from purified actin that had been

bound to the surface of a microscope slide.

The two geometries used when doing in vitro motility assays are the bead assay and

the gliding assay. In the bead assay, filaments are fixed to a substrate, such as a microscope

slide, and motors are attached to small plastic or glass beads. Then, in the presence of ATP,

the motion of the beads is visualized by a light microscope. In the gliding assay, the motors

are the ones which are fixed to the substrate and the filaments are placed on top of them and

their motion is observed. The fluorescence technique has been developed to a level were it

is even possible to image individual fluorescently labeled motors [44] and watch them move

along the filaments [45, 46].

1.3 Ratchet models for motor dynamics

1.3.1 The perpetuum mobile

When discussing ratchet models, it is worth to mention the perpetuum mobile of the second

kind. This machine can, supposedly, extract work out of a thermal bath violating the
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Figure 1.5: Purple urchin zygotes during first mitosis, fixed and stained for microtubules

(white) and phosphorylated myosin II (magenta; single confocal sections). Top row:

metaphase, anaphase, telophase, and furrowing completed, in untreated cells. Bottom row:

zygotes of equivalent stages, but treated five minutes before fixation with nocodazole. In

metaphase, only kinetochore fibers survive nocodazole treatment; the astral microtubules all

disappear. In anaphase, however, some astral microtubules remain, and during telophase it

is apparent that most of these point toward the equator (third panel, bottom row). Figure

taken from the center for cell dynamics, university of Washington

Figure 1.6: A colored scanning electron micrograph of a breast cancer cell mitosis. Figure

taken from Biology Reference.
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second law of thermodynamics2. This idea of extracting work out of a thermal bath was

first addressed in a conference talk given by Smoluchowski in Münster 1912 (published as

proceedings-article [42]) and was later popularized and extended in Feynmans Lectures on

Physics [43]. In order to convert Brownian motion into useful work, they have suggested the

following Gedankenexperiment (A thought experiment) illustrated in Fig. 1.7. An axle is

connected to paddles at one end and a ratchet at the other end. The ratchet is restricted by

a pawl to rotating in only one direction (see Fig. 1.7), and the whole device is surrounded by

a gas at thermal equilibrium. It seems rather convincing, that when the gas particles hit the

paddles, the device will rotate in only one direction (because of the pawl) and therefore, it

would allow to extract work out of the thermal bath. However this expectation is wrong: In

spite of the built in asymmetry, no preferential direction of motion is possible. Otherwise, this

would be in marked contradiction to the second law of thermodynamics. As Smoluchowski

points out [42], since the impacts of the gas molecules take place on a microscopic scale, the

pawl needs to be extremely small and soft in order to admit a rotation even in the forward

direction. Because of this, the pawl itself is therefore also subjected to non-negligible random

thermal fluctuations. So, every once in a while the pawl lifts itself up and the saw-teeth can

freely travel underneath allowing it to rotate backwards and “unwind” the lift back down.

An experimental Realization of this Gedankenexperiment has been done on a molecular

scale by Kelly et al. [47–49]. Their synthesis of triptycene (4)helicene incorporates into a sin-

gle molecule all essential components: The triptycene paddlewheel functions simultaneously

as circular ratchet and as paddles, the helicene serves as pawl and provides the necessary

asymmetry of the system. Both components are connected by a single chemical bond, giving

rise to one degree of internal rotational freedom. By the use of nuclear magnetic resonance

(NMR), the predicted absence of a preferential direction of rotation at thermal equilibrium

2Perpetuum mobile of the first kind is a machine that violates the first law of thermodynamics, conser-

vation of energy.
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Figure 1.7: Ratchet and pawl. The ratchet is connected by an axle with the paddles and

with a spool, which may lift a load. In the absence of the pawl (leftmost object) and the

load, the random collisions of the surrounding gas molecules (not shown) with the paddles

cause an unbiased rotatory Brownian motion. The pawl is supposed to rectify this motion

so as to lift the load. Figure made by OP designs.

has been experimentally confirmed.

1.3.2 Ratchet model for a single motor

According to the second law of thermodynamics, heat cannot be converted into work in an

isothermal system, this has been illustrated by Feynman [43] via the Gedankenexperiment

that has been discussed in subsection 1.3.1. One of the outcomes of the second law of

thermodynamics is that a particle which is placed in a thermal bath will diffuse randomly,

showing a Brownian motion with a vanishing mean displacement and speed. Even if an

asymmetric, but homogeneous on a macroscopic scale, potential is applied in the system, a

directed motion will not be induced as illustrated in Fig. 1.8. Therefore, in order to generate

a directed motion at a constant temperature, it is necessary to have an energy source and

drive the system out of equilibrium. Over the years, different ratchet models have been

13



used in order to generate such a directed motion. These works are divided into three types,

according to the origin of the energy source:

(i) Fluctuating forces: a point-like particle is places in a periodic, asymmetric potential

U(x) and is submitted to a fluctuating, zero average force, < F (t) >= 0, but with a richer

correlation function than a simple Gaussian white noise. These correlations of the fluctuating

forces reflect the energy source. Typically the particle motion is described by Langevin

equation:

λ
dx

dt
= ∂xU(x) + F (t), (1.1)

were x is the position of the particle and λ is the friction coefficient. Once the fluctuation

dissipation theorem is broken, a rectified motion sets in [17–28].

(ii) Fluctuating potential: a point-like particle is placed in a periodic, asymmetric

potential with a value that depends on time:

λ
dx

dt
= ∂xU(x, t) + f(t). (1.2)

x, λ, and U have the same meaning as in Eq. 1.1 but the potential depends explicitly on time,

and the random forces f(t) are Gaussian white noise which obeys a fluctuation-dissipation

theorem: < f(t) >= 0, and < f(t)f(t′) >= 2λTδ(t − t′). In these works, the potential’s

explicit dependence on time reflects the energy source. Most works have considered the case

in which U(x, t) = A(t)V (x) [29–32]

(iii) Particle fluctuating between states: the point-like particle transits between well-

defined states [33–37]. In each of the states, the particle experiences a classical Langevin

equation:

λi
dx

dt
= ∂xUi(x) + fi(t). (1.3)

The index i refers to the considered state, and fi(t) satisfies a fluctuation-dissipation theorem:

< fi(t) >= 0, and < fi(t)fj(t
′) >= 2λTδ(t− t′)δij. The dynamics of transitions between the
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Figure 1.8: A particle (in blue) is placed in an asymmetric potential. However, there is

no energy source in this system. The particle will spend most of the time near one of the

minima. Occasionally, it will hop from one well to its neighbor. The probability of the

particle hopping to the right/left neighbor depends only on the energy gap, ∆u, and does

not depend on the slope of the potential. Therefore P1(∆u) = P2(∆u) and the particle will

show a vanishing mean displacement and speed. Figure made by OP designs.

states is added independently, and reflects the energy source.

We conclude that all the three types of models presented above have an asymmetric

potential which models the polarity of the track on which the motor walks. In addition, all of

those models have some kind of an energy source which drives the system out of equilibrium.

The combination of these two is sufficient in order to generate a biased dynamics.

1.3.3 Ratchet model for collective motor dynamics

Ratchet models can be generalized to describe the collective dynamics of motors. For those

models, the particles can be taken to either have motor-motor interactions [50–53] or have

no such interactions. For the noninteracting case, the coupling is achieved by attaching

the particles, in a rigid or flexible connection, to a “backbone” while keeping the two-state
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model for each one of them [54]. The collective dynamics of motors is influenced by both

the motor-motor interactions [55] and the mechanical coupling, as illustrated in the model

proposed by Badoual at al. [1] (and which, we will present a slightly modified version of).

Ratchet models are also used to describe cooperative bidirectional dynamics. This dynamics

is characterized by a vanishing bias (this can be achieved by taking a symmetric potential)

but consists of long directional sections, where only on large time scales the dynamics can be

seen as bidirectional. The characteristic time it takes for the motion to change its direction

is marked as τrev. Of special interest is the theoretical work of Badoual at al. [1] where τrev

is found to have an exponential dependence on N , the number of motors. This means that,

for a symmetric potential, τrev will diverge in the thermodynamic limit, N → ∞. That is,

the system will exhibit a unidirectional motion in the direction that has been spontaneously

chosen at t = 0.

1.4 Outline

The thesis is organized as follows: In chapter 2 we study the bidirectional cooperative dy-

namics. We will introduce a thermal ratchet for the cooperative dynamics of MPs. The

model will be treated by means of computer simulations and analytical treatment. Our

model will reconstruct the divergence of the reversal time, τrev, in the thermodynamic limit.

This result is in marked contradiction to recent experimental results regarding the cooper-

ative dynamics of a-polar actin-myosin systems. Those experiments show no such strong

dependence of the reversal time, τrev, on N , the number of motors [2]. We will suggest to

solve this contradiction by modifying our model so it will take into account the elastic energy

of the actin filaments [3]. This will have a strong influence on the cooperative dynamics and

eliminate the exponential dependence of the reversal time, τrev, on N , the number of mo-

tors. Further on, in chapter 3, we will introduce a theoretical prediction, showing how this

elasticity will introduce an additional cooperative effect that will cause a symmetry braking

16



in the dynamics of certain spatially symmetric systems, that is, we will show that certain

perfect a-polar actin-myosin systems will exhibit a biased asymmetric dynamics due to this

elastic cooperative effect.
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Chapter 2

Bidirectional motion of a-polar

filaments

One of the more interesting outcomes of cooperative action of MPs is their ability to induce

bidirectional motion. “Back and forth” dynamic has been observed in various motility assays

including: (i) myosin II motors walking on actin tracks with randomly alternating polarities

[2], (ii) NK11 (kinesin related Ncd mutants which individually exhibit randommotion with no

preferred directionality) moving on microtubules (MTs) [56], (iii) mixed population of plus-

end (kinesin-5 KLP61F) and minus-end (Ncd) driven motors acting on MTs [57], and (iv)

myosin II motors walking on actin filaments in the presence of external stalling forces [58].

Reversible transport of organelles through the combined action of kinesin II, dynein, and

myosin V has been also observed in Xenopus melanophores [59]. In the latter example,

the kinesin and dynein move the organelle in opposite directions along MTs, while the

myosin motors (which take the organelle on occasional “detours” along the actin filaments)

function as “molecular ratchets”, controlling the directionality of the movement along the

MT transport system. From a theoretical point of view, cooperative dynamics of molecular

motors and, in particular, bidirectional movement, have been investigated using several

18



distinct models including ratchet models that have been discussed in section 1.3. Other

theoretical approaches are the lattice and continuum asymmetric exclusion models [50, 60–

65], and the tug-of-war model which has been recently proposed for describing the transport

of cargo by the action of a few motors [66–69]. The common theme in these experimental

and theoretical studies is the association of bidirectionality with the competition between

two populations of motors that work against each other to drive the system in opposite

directions. The occasional reversals of the transport direction reflect the “victory” of one

group over the other during the respective time intervals. The balance of power is shifting

between the two motor parties as a result of stochastic events of binding and unbinding

of motors to the cytoskeletal track. Without going into the details of the various existing

models of cooperative bidirectional motion, we note that most of them assume that the

motors interact mechanically but act independently, i.e., their binding to and unbinding

from the track are uncorrelated. By further assuming that the attachment and detachment

events of individual motors are Markovian, the distribution of “reversal times” (i.e., the

durations of unidirectional intervals of motion) can be shown to take an exponential form

p(δt) = exp(−δt/τrev), (2.1)

were τrev is the characteristic reversal time of the bidirectional motion.

2.1 Bidirectional cooperative motion of myosin-II mo-

tors on a-polar actin tracks

2.1.1 Experimental setup

This exponential distribution of “reversal times” (Eq. 2.1) has recently been measured in

a novel motility assay [2]. The setup of this motility assay contains two stages, in the
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first stage, the surface of a microscope slide was saturated by BSA1 and NEM myosin II.

Then, actin filaments/bundles were attached to, and on top of the NEM myosin motors as

illustrated in Fig. 2.1. In the second stage, myosin II minifilaments (multi-headed brown

objects, Fig. 2.2A) were added to the cell sample. This caused the severing of small polar

actin fragments that fused together with other short actin fragments of the opposite polarity,

creating new, longer, a-polar, bundles as described in details in Fig 2.2. The rate of fusion

events decreased with time and, after several minutes, the system relaxed into its final

configuration, shown schematically in Fig. 2.2F. Notice that the severing and rearrangement

of the originally formed actin filaments/bundles (Fig. 2.1B) led to the formation of much

shorter bundles (Figs. 2.2B-E). Moreover, the random nature of the multiple fusion processes

involved in the generation of these shorter bundles ensured that the final actin tracks were

highly a-polar.

2.1.2 Experimental results

The motion of the a-polar actin filaments was visualized by fluorescence microscopy. Fig. 2.3A

shows the position of center of mass of one bundle (three snapshots are shown in Figs. 2.3B-

D) during a period of more than 10 minutes of the experiment. The dynamics of this bundle

are representative of the motion of the other actin bundles. Measurements of the position

of the center of mass of the bundle were taken at time intervals of ∆t = 2 sec, and the mean

velocity in each such period of motion was evaluated by v = ∆x/∆t, where ∆x is the dis-

placement of the center of mass. Fig. 2.4A shows the velocity histogram of the bundle shown

in Fig. 2.3. The velocity histogram is bimodal indicating that the motion is bidirectional.

The speed of the bundle varies between |v| = 1− 2 µm/min, which is 2 orders of magnitude

lower than the velocities measured in gliding assays of polar actin filaments on myosin II

1the BSA is used to immobilize the Nem myosin II motors.
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Figure 2.1: (A) Schematic diagram of the system before addition of active motors. The

blue balls mark the BSA and the thin yellow line is the actin filament/bundle. The actin

filaments are attached to brown, long, two-headed objects which are the NEM myosin. (B)

An image of the system before the addition of active myosin II. The long curved vertical

objects are the actin filaments. Bar size is 5 µm. Figure taken from Gilboa et al. [2].

motors2 [70]. The bidirectional movement consists of segments of directional motion which

typically last between 2 to 10 time intervals of ∆t = 2. The statistics of direction changes

is summarized in Fig. 2.4B which shows a histogram of the number of events of directional

movement of duration t. The characteristic reversal time, τrev, can be extracted from the

histogram by a fit to an exponential distribution, Eq.2.1.

2The fact that the typical speed of the bidirectional motion is considerably smaller than those of

directionally-moving polar actin filaments can be partially attributed to the action of individual motors

working against each other in opposite directions.
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Figure 2.2: (A) Schematic diagram of the system after addition of active myosin II motors.

After the first stage (see Fig. 2.1), myosin II minifilaments (multi-headed brown objects) were

added to the sample. The motors that landed on the BSA surface created a homogeneous

bed of immobile, yet active, motors. Other motors landed on the actin filaments (long yellow

line), and started to move along it. During their motion, the motors exerted forces on the

actin filaments, which caused severing of small actin fragments (short yellow lines). The

ruptured actin fragments could move rapidly on the bed of active myosin II minifilaments

and fuse with other bundles. One fusion event is demonstrated in the sequence of snapshots

(B-E). Here, are shown (B) two bundles moving oppositely to each other, getting closer (C)

and then fusing (D-E) to create one larger object. Time is given in minutes, bar size is 5 µm.

(F) The bundles continue to grow in size through multiple fusion processes, until eventually

a large, highly a-polar bundle is formed (thick yellow tube - the inset illustrates the internal

structure of such a bundle, consisting of individual actin filaments with randomly orientated

polarities). Figure taken from Gilboa et al. [2].
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Figure 2.3: Position of a bundle over a time interval of 800 sec. The time interval between

the consecutive data points is 2 sec. (B-D) Pseudo-color images of the actin bundle. The

yellow arrows indicate the instantaneous direction of motion of the bundle. Bar size is 5 µm.

Figure taken from Gilboa et al. [2].
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Figure 2.4: Velocity histogram of the bundle whose motion is shown in Fig. 2.3 (based on

900 sampled data points - Fig. 2.3 shows only 400 of those points), exhibiting a clear bimodal

distribution. (B) Distribution of the reversal time for the same bundle. The distribution is

fitted by a single exponential decay function with a characteristic reversal time: τrev ∼ 3 sec.

Figure taken from Gilboa et al. [2].
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2.2 A ratchet model for the cooperative dynamics of

molecular motors

Our model is a modified version of the original model of Badual et al. [1] which was presented

in section 1.3. Our model is illustrated schematically in Fig. 2.5: We consider the 1D motion

of a group of N point particles (representing the motors) connected to a rigid rod with equal

spacing q. The actin track is represented by a periodic saw-tooth potential, U(x), with

period l and height H. We choose q = (5π/12)l ∼ 1.309l, this choice is motivated by the

incommensurate arrangement of motors and filaments in muscle fibers [1, 54]. The locally

preferred directionality of the myosin II motors along the actin track is introduced via an

additional force of size fran exerted on the individual motors when attached to the track. In

each unit of the periodic potential, this force randomly points to the right or to the left (the

total sum of these forces vanishes), which mimics the random, overall a-polar, nature of the

actin bundles in our experiments.

The instantaneous force between the track and the motors is given by the sum of all

the forces acting on the individual motors:

Ftot =
N∑
i=1

fmotor
i =

N∑
i=1

[
−∂U (x1 + (i− 1) q)

∂x
+ fran (x1 + (i− 1) q)

]
· Ci(t), (2.2)

where xi = x1 + (i − 1)q is the coordinate of the i-th motor. The two terms in the square

brackets represent the forces due to the symmetric saw-tooth potential and the additional

random local forces acting in each periodic unit. The latter are denoted by red arrows in

Fig. 2.5A. The function Ci(t) takes two possible values, 0 or 1, depending on whether the

motor i is detached or attached to the track, respectively, at time t. The group velocity of

the motors (relative to the track) is determined by the equation of motion for overdamped

dynamics:

v(t) = Ftot(t)/λ, (2.3)
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Were the friction coefficient, λ, depends mainly on motors attached to the track at a certain

moment and is therefore proportional to the number of connected motors, Nc ≤ N at time t:

λ = λ0Nc.

To complete the dynamic equations of the model, we need to specify the transition rates

between states (0 - detached; 1 - attached). The motors change their states independently

of each other. We define an interval of size 2a < l centered around the potential minima

(the gray shaded area in Fig. 2.5). If in one of these regions, an attached motor may become

detached (1 → 0) with a probability per unit time ω1. Conversely, a detached motor may

attach to the track (0 → 1) with transition rate ω2 only if located outside this region of size

2a. However, we also allow another independent route for the detachments of motors, which

may take place outside the gray shaded area in Fig.2.5 (i.e., around the potential maxima)

and is characterized by an off rate ω3. The rates ω1, ω2, ω3 (see blue arrows in Fig.2.5),

represent the probabilities per unit time of a motor to (i) detach after completing a unit

step, (ii) attach to the track, or (iii) detach from the track without completing the step.

2.2.1 Filament’s elasticity

One of the most important characteristics that our model shares with the original model

of Badual et al. [1] is that the attachment and detachment rates are constants. Because of

this, the reversal time, τrev, depends exponentially on the number of motors, N . However,

the experimental results of Gilboa et al. [2], presented in Fig. 2.6, clearly contradict this

theoretical prediction, and therefore, we conclude that our model is missing something.

Generally speaking, the rates of transitions between states depend on many biochemical

parameters, most notably the types of motors and tracks, and the concentration of chemical

fuel (e.g., ATP). They may also be affected by the forces induced between the motors and

the filament, which result in increase in the configurational energy of the attached myosin

motors [71–74] and in the elastic energy stored in the S2 domains of the mini-filaments, as well
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Figure 2.5: N point particles (representing the motors) are connected to a rigid rod with

equal spacing q. The motors interact with the actin track via a periodic, symmetric, saw-

tooth potential with period l and height H. In each periodic unit, there is a random force

of size fran, pointing either to the right or to the left. The motors are subject to these forces

only if connected to the track. The detachment rate ω1 is localized in the shaded area of

length 2a < l, while the attachment rate ω2 is located outside of this region. The off rate ω3

is also located outside the gray shaded area.
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as an increase in the stretching energy of the actin filament. The latter contribution can be

introduced into the model via a modified detachment rate given by: ω3 = ω0
3 exp(−∆E/kBT ),

where ∆E is the change in the elastic energy of the actin track due to the detachment of

one motor head. The dependence of ∆E on the number of connected motors Nc (out of a

total number of motors, N) can be estimated in the following manner: Consider a series of

N + 1 point particles connected by N identical springs (representing a series of sections of

actin filaments) having a spring constant k (see Fig. 2.7). Let us assume that random forces

act on the particles and denote the force applied on the particle with index l (1 ≤ l ≤ N +1)

by fl. Assume that each of these forces can take three possible values: −f (representing

attached motors locally pulling the track to the left), +f (attached motors pulling the track

to the right), and 0 (detached motors not applying force). Defining the ”excess force” with

respect to the mean force acting on the particles: f ∗
l = fl− f̄ (where f̄ =

∑N+1
i=1 fl/(N +1)),

one can show that the force stretching (or compressing) the i-th spring in the chain is given

by the sum of excess forces acting on all the particles located on one side of the spring

Fi =
i∑

l=1

f ∗
l = −

N+1∑

l=i+1

f ∗
l . (2.4)

From Eq. 2.4 it can be easily verified that
∑N

i=1 Fi = 0. We thus conclude that the excess

forces acting on the particles, f ∗
l , represent a series of random quantities with zero mean.

Therefore, the size of Fi can be estimated by mapping the chain of springs into the problem of

a 1D random polymer ring [75], where the elastic energy stored in the i-th spring, εi = F 2
i /2k,

plays the role of the squared end-to-end distance between the i+1 monomer and the origin.

From this mapping we readily conclude that the energy of most of the springs (except for

those located close to the ends of the chain) scales linearly with the number of attached

motors: ε ∼ Nc(f
2/2k). The total elastic energy of the chain scales as

E ∼ Nε ∼ NNc(f
2/2k), (2.5)
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and when a motor detaches from the track (Nc → Nc − 1),

∆E/kBT = −αN (2.6)

where α is a dimensionless prefactor.

2.2.2 Model parameters

We simulated the dynamics of an N -motor system, choosing parameters corresponding to

the myosin II-actin system. The period of the potential l = 5 nm corresponds to the distance

between binding sites along the actin track [76–78], and therefore q = 6.54 nm (see section

2.2). The force generated by each motor head on the track is 2H/l = 5 pN (first term

in square brackets in Eq. 2.2). The magnitude of the random force that defines the local

polarity of the track (second term) is given by fran = 1 pN, so the total force acting on

each motor head ranges between about 4 to 6 pN [76, 77, 79, 80]. The interval around the

potential minima from which motors can detach from the track with rate ω1 is chosen to be

2a = 3.8 nm. The transitions rates between attached and detached states are ω−1
1 = 0.5 ms

and ω−1
2 = 33 ms [39, 81–83]. With this choice of parameters, we obtain a system with a

low fraction of attached motors (see later Fig. 2.12) which is characteristic for nonprocessive

myosin II motors. We also set the friction coefficient per attached motor to λ0 = 85 · 103

kg/s, which yields the velocity v ∼ 0.02 µm/s (see later the insets of Fig 2.8A). The rate ω0
3

expresses the probability of a single motor head to detach from the track without advancing

to the next unit. The probability p̃ of such an event is 1-2 orders of magnitude smaller

than the complementary probability (1 − p̃) to execute the step. We take p̃ = 1/30 [83],

which yields(ω0
3)

−1 ∼ (pv/l)−1 = 7500 ms. Finally, the exponent α appearing in Eq. 2.6 is

evaluated by:

α ∼ (f 2/2kkBT ) = (f 2l/2Y AkBT ), (2.7)
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Figure 2.6: Characteristic reversal time, τrev, of 19 different bundles as a function of the

number of working motorsN . The reversal time for each bundle is obtained by an exponential

fit as shown in Fig.2.4B. Figure taken from Gilboa et al. [2].

Figure 2.7: A schematic drawing of the system: A chain of consisting of N + 1 monomers

connected by with alternating polarities. The monomers are connected to each other by N

identical springs. The chain lies on a “bed” of motors, some of which are connected to the

monomers. A connected monomer with positive (negative) polarity feels a pulling force of

size +f (−f). Disconnected monomers experience no force. Figure taken from Gilboa et

al. [2].
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where Y ∼ 109 Pa is Young’s modulus for actin and A ∼ 35 nm2 is the cross sectional area

of an actin filament [83]. For the model parameters α ∼ 0.002. There is some freedom in

choosing the model parameters, fortunately, our model does not show a strong dependence

on most of those parameters. One exception is the value of α which is somewhere between

0.0015 and 0.0025, we have chosen to work with the intermediate value, α ∼ 0.002. Later in

this work, in the end of section 2.4, we will show the dependence of our results for solving

the model using slightly different model parameters.

2.3 Computer simulations

The model presented in section 2.2 has been investigated by means of Metropolis Monte

Carlo simulations by Gillo et al. [3]. In order to simulate conditions corresponding to the

dynamics of a-polar tracks, they randomly chose the direction of the random force (the force

representing the local polarity of the track, see horizontal red arrows in Fig. 2.5) in each

unit cell, but discarded the tracks at which the sum of random forces did not exactly vanish.

They computationally measured the characteristic reversal time, τrev, as a function of N in

the range of 400 ≤ N ≤ 2400. For each value of N , they generated 40 different realizations

of random tracks and simulated the associated dynamics for a total period of 2 ·105 seconds.
During this period of time they followed the changes in the direction of motion and calculated

the probability distribution function (PDF) of the reversal times. The characteristic reversal

time corresponding to each random track was extracted by fitting the PDF to an exponential

form (see Eq. 2.1), as demonstrated in Fig. 2.8A. Fig. 2.8B summarizes the results, where

here, for each N , the reversal time plotted (denoted by 〈τrev〉) is the average of τrev calculated
for the different track realizations. The error bars represent the standard deviation of τrev

between realizations. The data points depicted in solid circles correspond to α = 0.002,

while the open circles correspond to α = 0, i.e., to the model originally presented in ref. [1]
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where the on and off rates defined in Eqs. 2.9 and 2.10 do not dependent on N . The mean

reversal time 〈τrev〉 exhibits a very strong exponential dependence on N for the case of α = 0

as shown by the straight line in Fig. 2.8B. Because of this very rapid increase of 〈τrev〉 with
N , the reversal times (in the α = 0 case) could not be accurately measured for N > 1800.

Based on the exponential fit (solid line in Fig. 2.8B), the mean reversal time for N = 2400 is

estimated to be of the order of a few hours. In contrast, the calculated 〈τrev〉 corresponding to
α = 0.002 show a non-monotonic dependence on N . The computed 〈τrev〉 are much smaller

in this case, and fall below 1 minute for all values of N .

2.4 Analytical treatment

In the following section we use a master equations to analyze the bidirectional motion ex-

hibited by the computational simulations. This analytical approach corresponds to the limit

N À 1 where one can introduce the probability densities patt(x) and pdet(x) of finding a

motor in the attached or detached state, respectively, at position −l/2 < x ≤ l/2 within the

unit cell of the periodic potential. These probability densities are the steady-state solutions

of the following set of coupled master equations which govern the transitions between the

two connectivity states:



∂tpatt(x, t) + v∂xpatt(x, t) = −ωoff(x)patt(x, t) + ωon(x)pdet(x, t)

∂tpdet(x, t) + v∂xpdet(x, t) = −ωon(x)pdet(x, t) + ωoff(x)patt(x, t).
(2.8)

Were v is the group velocity of the motors and ωon(x) and ωoff(x) denote the space-dependent

on and off rates defined as

ω on(x) =





0 |x| ≤ a

ω2 a < |x| ≤ l/2
(2.9)

and

ω off(x) =





ω1 |x| ≤ a

ω0
3 exp(αN) a < |x| ≤ l/2.

(2.10)
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Figure 2.8: (A) The probability distribution function (PDF) of the reversal time corre-

sponding to one track realization of N = 1000 motors. The distribution is fitted by a single

exponential decay function (see Eq. 2.1). The insets show the velocity histogram which is

symmetric with average velocities of < v >= 0.02 µm/sec and < v >= −0.02 µm/sec for

bundles moving to the right and left respectively. (B) The mean reversal time 〈τrev〉 as a

function of the number of motors N . For each value of N , the calculation of 〈τrev〉 is based
on simulations of 40 different track realizations, where the error bars represent the stan-

dard deviation of τrev between realizations. The solid and open circles denote the results

corresponding to α = 0.002 (our model) and α = 0 (original model presented in ref. [1]),

respectively. In the latter case 〈τrev〉 increases exponentially with N (as indicated by the

solid straight line), while in the former case 〈τrev〉 exhibits a non-monotonic behavior (as

indicated by the dashed line which serves as a guide to the eye) and reaches considerably

lower values. Figure taken from Gur et al. [3].
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Because the spacing between the motors is incommensurate with the periodicity of the

potential, the total spatial distribution is uniform in x for N À 1:

patt(x, t) + pdet(x, t) =
1

l
. (2.11)

Using Eq. 2.11, together with Eqs. 2.9 and 2.10 to define the on and off rates in Eq. 2.8, the

following steady-state equation (∂tp = 0) can be derived for patt(x):

lv
dpatt(x)

dx
=





−lω1patt(x) for |x| ≤ a

ω2 − l (ω2 + ω0
3 exp (αN)) patt(x) for a < |x| ≤ l/2.

(2.12)

Eq 2.12 should be solved subject to the boundary condition that patt(−l/2) = patt(l/2) and

the requirement that patt(x) is continuous anywhere in the interval −l/2 ≤ x ≤ l/2, including

at x = ±a. Several solutions are plotted in Fig. 2.9 for 2a = 0.76l (see section 2.3), and three

different sets of attachment and detachment rates: ω0
3 = 0, and (ω1, ω2) = (v/l, v/l) (thin

solid line), (5v/l, 5v/l) (dashed line), and (30v/l, 30v/l) (thick solid line). Those rates are

taken to show the dependence of the probability density on the attachment and detachment

rates, and do not, at this point, correspond to the rates presented in section 2.3.

The solutions in Fig. 2.9 correspond to the case when the motors move to the right

(v > 0) and, therefore, it is easy to understand why patt reaches its maximum at x = −a

(just before the motors enter, from the left, into the central gray-shaded detachment interval

(−a < x < a)) and its minimum at x = a (just before leaving the central detachment

interval through the right side). We also notice that when the off rate ω1 À v/l, patt drops

very rapidly (exponentially) to near zero in the detachment interval. When the attachment

rates ω2 À v/l, patt increases exponentially fast for x > a and rapidly reaches the maximum

possible value patt = 1/l. The second steady state solution corresponding to the case when

the motors move to the left (v < 0) is simply a mirror reflection of the first solution with

respect to x = 0.

Each of the steady state solutions is characterized by Nc = N · P (P ≤ 1) connected
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Figure 2.9: The steady state probability density, patt, as a function of x, the position within

a unit cell of the periodic potential. The functions plotted in the figure correspond to

2a = 0.76l, ω0
3 = 0, and (ω1, ω2) = (v/l, v/l) - thin solid line, (ω1, ω2) = (5v/l, 5v/l) - dashed

line, (ω1, ω2) = (30v/l, 30v/l) - thick solid line. Figure taken from Gur et al. [3].
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motors. Were Nc is the number of connected motors, and P , the mean probability to

be in the connected state is obtained by integrating the function patt(x) over the interval

−l/2 ≤ x ≤ l/2

P =

∫ l/2

−l/2

patt(x) dx. (2.13)

The population of connected motors can be divided into two groups: The connected motors

which are located left to the minimum of the periodic potential (−l/2 < x < 0) experience

forces pushing them to the right, i.e., forces directed in their direction of motion. Conversely,

attached motors which are located right to the minimum experience forces directed opposite

to their direction of motion. We will mark N+ and N− = Nc − N+ ≤ N+ motors that,

respectively, support and object the motion. Let us define the excess number of motors

working in the direction of the motion as N · ∆ = N+ − N−, where ∆ will be termed the

“bias parameter”. The “bias parameter’, can be related to patt by

∆ =

∫ 0

−l/2

patt(x) dx−
∫ l/2

0

patt(x) dx. (2.14)

Notice that P and ∆ denote the averages of quantities (which we, respectively, denote by

P (t) and ∆(t)) whose values fluctuate in time due to the stochastic binding and unbinding

of motors. In order to derive an expression for the reversal time of the dynamics, we now

consider the fluctuations of the instantaneous bias parameter, ∆(t), around the mean value

∆. The motors may switch their direction of motion when ∆(t) = 0, i.e., when the motion

momentarily stops. The occurrence probability of such an event can be related to the mean

reversal by:

τrev ∼ [Π (∆ (t) = 0)]−1 . (2.15)

To estimate Π (∆ (t) = 0) we proceed by noting that the probability of finding a motor

attached left to the minimum of the potential, i.e. a motor experiencing a force directed in

the direction of motion, is P+ = (P + ∆)/2. The probability that a motor is experiencing
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a force directed opposite to the direction of motion is P− = (P −∆)/2. The probability of

having N+ and N− ≤ N+ motors which, respectively, support and object to the motion can

thus be approximated by the trinomial distribution function

π(N+, N−) =
N !

N+!N−!(N −N+ −N−)!

(
P +∆

2

)N+
(
P −∆

2

)N−

(1−P )(N−N+−N−). (2.16)

The instantaneous bias is given by ∆(t) = (N+ −N−)/N , and the probability that ∆(t) = 0

can be expressed as sum over the relevant terms in Eq. 2.16 for which N− = N+

Π(∆(t) = 0) =

N/2∑
i=0

π(i, i) =

N/2∑
i=0

N !

(i!)2(N − 2i)!

(
P 2 −∆2

4

)i

(1− P )(N−2i). (2.17)

Replacing the sum in Eq. 2.17 by an integral, using Sterling’s approximation for factorials,

expanding the logarithm of the integrand in a Taylor series (up so second order) around the

maximum which is at imax = (N/2)
√
P 2 −∆2/(1−P +

√
P 2 −∆2) and then exponentiating

the expansion, and finally extending the limits of integration to ±∞ (which has a negligible

effect on the result for N À 1) - leads to:

Π(∆(t) = 0) =
[
1− P +

√
P 2 −∆2

]N
×
∫ +∞

−∞
dy exp

[
− 2

C(1− C)N
(y − imax)

2

]
, (2.18)

where C =
√
P 2 −∆2/(1− P +

√
P 2 −∆2). This yields

τrev =
2τ0

Π(∆ (t) = 0)
= 2τ0

√
2

πC(1− C)N

[
1− P +

√
P 2 −∆2

]−N

, (2.19)

where τ0 is some microscopic time scale. The factor of 2 in the numerator in Eq. 2.19 is due

to the fact that once the motors stop, they have equal probability to move in both directions.

Eq. 2.19 predicts an almost exponential dependence of τrev on N only for constant values of

P and ∆, which was the case in ref. [1]. In the more general case, the dependence of τrev on

N can be derived by calculating the values of P and ∆ as a function of N and substituting

these values into Eq. 2.19.

To test the validity and accuracy of the analytical expression for τrev, we take the

following steps: (i) set the model parameters l, a, ω1, ω2, ω
0
3, and α to the values used in the
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computer simulations, section 2.3, (ii) calculate the probability density patt corresponding

to these values (Eq. 2.12) and use Eqs. 2.13 and 2.14 to calculate P and ∆ over the range

of N studied in the simulations, (iii) substitute the values of P and ∆ into Eq. 2.19, to

obtain τrev as a function of N , (iv) fit the analytical expression for τrev(N) to the simulation

results plotted in Fig. 2.8B. This procedure involves two fitting parameters: the microscopic

time scale τ0 appearing in Eq. 2.19, and the group velocity v appearing in the steady-state

equation (Eq. 2.12). A seemingly reasonable choice for the latter would be v = 20 nm/sec,

which is where the velocity histogram of the bidirectional motion is peaked (see the insets

of Fig. 2.8A). However, the motors slow down before each change in their direction of the

motion; and because these changes in the directionality are fairly rare events, their occurrence

probability is likely to be strongly influenced by the short periods of slow motion preceding

them. Thus, it can be expected that the best fit of Eq. 2.19 to the simulation results is

achieved for v < 20 nm/sec. Indeed, for v = 8.2 nm/sec and τ0 = 680 msec, we obtain the

fitting curve shown in Fig. 2.10, which is an excellent agreement with our computational

results for the reversal times (plotted in Fig. 2.8B and replotted here in Fig. 2.10) over the

whole range of values of N investigated (400 < N < 2400). The steady state probability

density, patt(x), on the basis of which τrev was calculated is shown in Fig. 2.11 for several

different values of N (N = 1000 - solid line, N = 2000 - dashed line, N = 2500 - thick solid

line). As can be seen from the figure, the detachment rate ω1 in our simulations is so large

that the central detachment interval of the unit cell (−a < x < a) is completely depleted

of motors. Increasing N leads to a decrease in the effective attachment rate around the

potential maximum, which reduces both the number of motors supporting (−l/2 < x < −a)

and objecting (a < x < l/2) the motion and leads to the non-monotonic dependence of τ on

N . The fitting value of τ0 = 680 msec is very close to τ ∗ = l/v = 5 nm/(8 nm/sec) = 625

msec, which is the traveling time of the motors within a unit cell of the potential (once

we set v = 8.2 nm/sec) and, therefore, is also the characteristic time scale at which the

motors change their “states” (detached, connected and supporting the motion, connected
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Figure 2.10: The reversal time 〈τrev〉 as a function of the number of motors N . The circles

denote the simulations results (replotted from Fig. 2.8). The curve is a fit of the results to

Eq. 2.19, with τ0 = 680 msec and v = 8.2 nm/sec. Figure taken from Gur et al. [3].

and objecting the motion). The remarkable agreement between the analytical and simulation

results for τrev should not, however, be allowed to obscure the fact that Eq. 2.19 is a master

equation which, in principle, is not suitable for the calculating the probabilities of rare

fluctuation events (such as velocity reversals in cooperative bidirectional movement). The

agreement is achieved with effective velocity (v = 8.2 nm/sec) which is significantly smaller

than the typical velocity measured in the simulations (v = 20 nm/sec). Therefore, one should

not expect the steady state probability density patt(x) plotted in Fig. 2.11 to perfectly match

the simulations data.

For a slightly different set of model parameters, which are still valid for an actin II-

myosin system [2], we could fit our analytical expression of the reversal time (Eq. 2.19), to

the experimental results for a range of motors 400 < N < 3000, see Fig. 2.13.
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Figure 2.11: The steady state probability density patt(x) computed for several values of N

(N = 1000 - solid line, N = 2000 - dashed line, N = 2500 - thick solid line). The group

velocity of the motors is v = 8.2 nm/sec, while the model parameters are set to the values

used in the simulations (see section 2.2.2). Figure taken from Gur et al. [3].
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Figure 2.12: The probability of a motor to be in the connected state (defined in equation 2.13)

as a function ofN , the number of motors. The probability corresponds to our modified elastic

model as explained in section 2.2.1. If the elasticity of the actin filament was not taken into

account, the probability of a motor to be in the connected state would be constant with a

value of P=0.187 (which is the value of P(N=0) in the plot).
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Figure 2.13: The reversal time 〈τrev〉 as a function of the number of motors N . By taking a

slightly different set of model parameters, which are still valid for an actin II-myosin system,

we were able to reduce both the computed simulated results (in blue) and the analytical

results (in red) to the range of the experimental results (in green). In this plot, we have

fitted our analytical expression of the reversal time, τrev, (Eq. 2.19) to the experimental

results.
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2.5 Summary

We use a two-state ratchet model to study the cooperative bidirectional motion of myosin II

motors on actin tracks with randomly alternating polarities. Our model is an extension of

a model previously proposed by Badoual et al. to explain the macroscopically large reversal

times measured in motility assays [1]. These time scales of velocity reversals are orders of

magnitude longer than the microscopic typical stepping times of individual motors and can

be understood as a result of collective effects in many-motor systems. The ratchet model

that we use assumes that the motors are coupled mechanically but act independently, i.e.,

their binding to and unbinding from the cytoskeletal track are statistically uncorrelated.

These assumptions lead to a predicted exponential increase of τrev with N , the number

of motors. Motivated by recent experiments which exhibit no such dependence of τrev on

N [2], we introduced a modified version of Badoual’s model which accounts for an additional

cooperative effect of the molecular motors and which eliminates the exponential increase of

τrev with N . This additional collective effect arises from the forces that the motors jointly

exert on the actin and the associated mean elastic energy which scales as E/KBT ∼ NNC

(where NC < N is the number of attached motors). This scaling relationship implies that

the typical energy released when a motor is detaching from the track increases linearly with

N and, therefore, the detachment rate in many-motor systems should be larger than the

detachment rate of individual motors. We show, both computationally and analytically,

that when this effect is taken into account and the detachment rate is properly redefined,

the characteristic reversal time does not diverge for large N . Instead, τrev exhibits a much

weaker dependence on N and reaches a maximum at intermediate values of N .

While our model definitely improves the agreement with the experimental results (com-

pared to the original model), further improvement is needed in order to eliminate the non-

monotonic dependence of τrev on N . One step in this direction may be to consider other

forms of the off-rate ω3 which are based on more accurate evaluations of the actin elastic
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energy. In the present work, our analysis is based on the approximation that the detachment

rate depends only on N (the total number of motors), but not on the instantaneous num-

ber of attached motors and their locations along the cytoskeletal track. As a final remark

here we note that our analytical calculation probably leads to over-estimation of the effect

of the “track-mediated” elastic interactions on the reversal times (which may explain the

decrease in τrev for large N). In a more detailed picture the motors which release higher

energy will detach at higher rates, and the detachment of these “energetic” motors will lead

to the release of much of the elastic energy stored in the actin track. By contrast, in our

analytical treatment, the contribution of all the connected motors to the energy is the same.

Therefore, within our analytical calculation, a larger number of motors must be disconnected

at a higher frequency, which increases the “stochastic noise” in the system that reduced τrev.
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Chapter 3

Biased bidirectional dynamics of

a-polar filaments

In the previous chapter, when we performed the analytical calculation, we have ignored

both: (i) the sequential order of the polarities of the monomers, and (ii) the positions along

the filament where the pulling forces of motors are applied. Within that treatment, the

bidirectional motion on perfectly a-polar tracks consisting of an equal number of monomers

with right-pointing (“positive”) and left-pointing (“negative”) polarities has no bias, i.e.,

the intervals of motion in both directions occur with equal probability. In this chapter

we discuss an interesting effect related to the elasticity of the actin. We show that a-polar

elastic filaments may exhibit a biased bidirectional motion and achieve a net migration along

the motors-coated surface. For myosin II-actin systems, we find that the drift velocity is

typically 2-3 orders of magnitude smaller than the velocity of a single myosin II motor and is

comparable with the speed by which the motors move the a-polar bundle cooperatively during

the unidirectional intervals of motion. This newly identified mechanism of propagation may,

therefore, be relevant to processes of active self-organization of cytoskeletal structures during

which filaments are transported and joined with each other by MPs.
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3.1 Active transport of a-polar elastic chains

To demonstrate the effect, we consider the chain illustrated in Fig. 3.1, consisting of N

monomers connected by (N − 1) identical springs with a spring constant k. Each monomer

may be either free and experience no pulling force (f = 0), or attached to one motor in

which case it is subjected to a force of magnitude f which is directed to the right (+f) for

monomers with positive polarities and left (−f) for monomers with negative polarities. The

moving velocity of the filament is given by V = ftotal/λ, where ftotal =
∑N

l=1 fl is the sum

of motor forces applied on the monomers and λ is the friction coefficient of the chain. A

chain of N monomers has 2N connection configurations, where each such configuration can

be represented by a vector ~C of size N specifying the state (connected/disconnected) of each

monomer. For example, a chain of 4 monomers in which the first and third monomers are

connected to motors will be represented by ~C = (1, 0, 1, 0). Let us also introduce a vector ~S

whose components are related to the polarities of the monomers. The vector ~S = (1, 1,−1, 1),

for instance, corresponds to a chain of 4 monomers in which the polarities of the first, second,

and fourth monomers is positive while the third monomer has a negative polarity. The drift

velocity can be calculated by averaging over all possible connection configurations of the

motors (all possible values of the vector ~C):

Vdrift(~S) ≡ 〈V 〉 =
2N∑
j=1

f

λj

(
~Cj · ~S

)
Pj, (3.1)

where Pj is the occurrence probability of the configuration, and the subscript j has been

added to λ to account for possible variations in the friction coefficient between the different

configurations. The probability Pj depends on (i) the number of attached motors in the

configuration, Nc(j) = ‖~Cj‖2, (ii) the attachment probability of a single motor, ρ, and (iii)

the total elastic energy of the springs Eel
j :

Pj =
1

Z
ρNc(j)(1− ρ)(N−Nc(j))e−βEel

j , (3.2)
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where β = (kBT )
−1 is the inverse temperature and Z is the partition function of the system.

The elastic energy is the sum of the energies of the springs, Eel
j =

∑N−1
i=1 F 2

i /2k, where Fi is

the force stretching (or compressing) the i-th spring. The forces Fi can be calculated using

the following steps: (i) calculate the mean force f̄ ≡ ftotal/N = f(~C · ~S)/N , (ii) calculate the

access forces acting on the monomers f ∗
l = fClSl− f̄ , and (iii) sum the access forces applied

on all the monomers located on one side of the spring Fi =
∑i

l=1 f
∗
l = −∑N

l=i+1 f
∗
l . Our

analysis is based on the assumption that variations in ~C (which occur when motors attach to

or detach from the actin track) lead to instantaneous changes in the velocity of the filament

which should always be proportional to the total exerted force. This assumption is expected

to hold for low Reynolds numbers where inertia can be neglected.

fl = −f fl = f

1

+ − ++− −

N2

k

motors

Figure 3.1: A schematic drawing of the system: A chain of consisting of N monomer con-

nected to each other by N − 1 identical springs. The chain lies on a “bed” of motors, some

of which are connected to the monomers. A connected monomer with positive (negative)

polarity feels a pulling force of size +f (−f). Disconnected monomers experience no force.

Figure taken from Gur and Farago [4].

3.2 Analysis of the N = 4 case

For a better understanding, it will be useful to examine a short chain of size N = 4. There

are six different a-polar sequences for a chain of this length: ~S1a = −~S1b = (1, 1,−1,−1),
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~S2a = −~S2b = (1,−1, 1,−1), ~S3a = −~S3b = (1,−1,−1, 1). It is easy to prove that the drift

velocity (see Eqs. (3.1) and (3.2)) vanishes for the first four sequences which are antisym-

metric with respect to reflection around the midpoint. This is not the case with the last two

symmetric configurations. To see this, consider the sequence ~S3a and assume, for simplicity,

that λj = λ. In the limit ρ ¿ 1, one can ignore the configurations in which more than one

monomer is connected to a motor. There are, therefore, only five possible configurations:

(i) ~Cj = (0, 0, 0, 0), for which Vj = 0 and Pj = (1− ρ)4/Z.

(ii) ~Cj = (1, 0, 0, 0) and ~Cj = (0, 0, 0, 1), for which Vj = f/λ and Pj = ρ(1−ρ)3e−(7/8)(βf2/2k)/Z.

(iii) ~Cj = (0, 1, 0, 0) and ~Cj = (0, 0, 1, 0), for which Vj = −f/λ and Pj = ρ(1−ρ)3e−(3/8)(βf2/2k)/Z.

Substituting this in Eq. (3.1) gives Vdrift(~S3a) = −Vdrift(~S3b) ' −2(f/λ)ρ[e−(3/8)(βf2/2k) −
e−(7/8)(βf2/2k)]. For βf 2/2k ¿ 1 we find that the drift velocity increases with a third power

of the motor force, Vdrift ' (β/2kλ)f 3. This power law has a different exponent than 1 – the

scaling exponent for the velocity of stiff polar chains.

3.3 Long chains

To further investigate this effect, we calculated the drift velocity for chains of N = 4M

monomers with sequences of the form ~S = (

M︷ ︸︸ ︷
−1, . . . ,−1,

2M︷ ︸︸ ︷
1, . . . , 1,

M︷ ︸︸ ︷
−1, . . . ,−1). Our results

are summarized in Figs. 3.2(A) and (B). Fig. 3.2(A) is based on a calculation in which

the friction coefficient (see Eq. (3.1)), λj = λ0N , while in Fig. 3.2(B), we assumed that

λj = λ0Nc(j). The results for N ≤ 28 have been derived using a full statistical calculation

of the partition function, while for larger N they have been obtained from Metropolis Monte

Carlo simulations. The model parameters were assigned the following values which are

representative of myosin II-actin systems [3, 83]: βf 2/2k = 0.002, ρ = 0.1, and the speed

of a single motor, v = f/λ0 = 6 µm/sec. Both figures show that for small chains of size

N < 200, the drift velocity increases rapidly with N . For larger chains (N > 200), Vdrift
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behaves differently in Figs. 3.2(A) and (B). In the former it decreases with N , while in the

latter it saturates and increases again for N > 600. Note also the different scales of the

y-axis in both figures. These differences can be attributed to the different values of λj used

in the cases represented by Figs. 3.2(A) and (B). Since for each configuration, the ratio

between the friction coefficients in both cases rλ ≡ λB
j /λ

A
j = Nc(j)/N ≤ 1, the drift velocity

in (B) must always be larger than in (A). Fig. 3.3 depicts the mean value of rλ (i.e., the

mean fraction of connected monomers) as a function of N . For N < 50, 〈rλ〉 ' ρ = 0.1

and, accordingly, the ratio between the drift velocities in (B) and (A) in this region is close

to one order of magnitude. For N > 50, 〈rλ〉 drops to values much smaller than ρ, which

implies that the friction coefficient per monomer decreases with N in case (B) and explains

why the drift velocity remains high and does not decrease sharply as in (A). The decrease

in the mean fraction of connected monomers can be traced to the fact that configurations

with larger Nc(j) have, in general, higher elastic energies and, therefore, smaller statistical

weights. For the mean elastic energy, Eel
j /kBT = c(βf 2/2k)NNc(j) [2, 3], one gets

〈rλ〉 =
〈
Nc

N

〉
=

ρ exp(−cNβf 2/2k)

1− ρ[1− exp(−cNβf 2/2k)]
, (3.3)

where c is a dimensionless constant of the order of 1. For c = 0.75 and N ≤ 1000, this expres-

sion (solid line in Fig. 3.3) gives a fair agreement with the computational results. For larger

values of N (i.e., when 〈Nc/N〉 becomes very small), the expression tends to overestimate the

rate of decrease in the mean fraction of connected monomers (or, equivalently, the effective at-

tachment probability). The decrease in the attachment probability of the motors is another,

indirect, manifestation of cooperativity between the motors which is mediated through the

forces that they jointly exert on the actin track. Eq. (3.3) suggests that the elasticity of the

track can be neglected for small filaments whose size N ¿ (βf 2/2k)−1 ≡ N∗. In this regime,

the two cooperativity effects discussed here which are associated with the elasticity of the

actin filaments disappear: (i) The drift velocity Vdrift ∼ (β/2kλ)f 3 = (f/λ)(N∗/N) ¿ (f/λ)

is vanishingly smaller than the typical speed by which the bidirectionally moving bundle
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propagates in each direction, and (ii) the fraction of attached motors 〈Nc/N〉 ' ρ is very

close to the attachment probability of individual motors. The elasticity effects can be de-

tected only for long filaments with N & N∗, which are softer (the effective force constant of

the filament decrease as N−1) and, hence, more influenced by the forces of the motors. For

infinitely stiff filaments (k → ∞), the crossover filament size diverges (N∗ → ∞) and the

filament elasticity is, of course, irrelevant on all length scales.

50



0 500 1000 1500 2000
N

0

1

2

3

4

5

V
dr

if
t [

nm
/s

ec
]

0 500 1000 1500 2000
N

0

10

20

30

40

50

60

70

V
dr

if
t [

nm
/s

ec
]

(A)

(B)

Figure 3.2: The drift velocity Vdrift as a function of the length of the chain. The friction

coefficient λj is proportional to the number of monomers N in (A) and the number of

connected motors Nc(j) in (B). The lines are guides to the eye. Figure taken from Gur and

Farago [4].
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Figure 3.3: The mean fraction of monomers connected motors, 〈Nc/N〉 as a function of N .

The solid line represents Eq.(3.3) with c = 0.75. Figure taken from Gur and Farago [4].

3.4 Summary

Figs. 3.2(A) and (B) represent two limiting cases. In the former, the friction is caused by the

drag of the actin bundle in the viscous environment, while in the latter it originates from the

attachment of the actin to the underlying surface of motors. The actual friction coefficient

is expected to lie between these two extreme values and, therefore, the drift velocity should

exhibit an intermediate behavior between those shown in Figs. 3.2(A) and (B). Thus, the

typical magnitude of Vdrift is expected to be of the order of 10 nm/sec. Interestingly, the drift

velocity of the bundle is of the same order of magnitude as its speed during the bidirectional

motion [2], which has also been found to be 2-3 order of magnitude smaller than the moving

velocity of individual myosin II motors (v ∼ 6 µm/sec [83]). Over a period of a few minutes

the a-polar bundle may progress a distance of a few micrometers. This implies that the drift

of a-polar bundles may be relevant to the active remodeling of the cell cytoskeleton occurring
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during many cellular processes.

Our investigation of the role of the filament elasticity in modifying collective motion

of molecular motors has been motivated by experiments which have been described and

analyzed in chapter 2. In this chapter we presented a more realistic microscopic based

model that involves the determination of the exact elastic energy of the filaments. We

demonstrated that such a model leads to new insights and novel results like the biased

transport of filaments with no net polarities. Experimental verification of this surprising

result is, however, difficult. It requires that (i) the moving filaments are perfectly a-polar

with internal (sequential) order, and (ii) that they move for sufficiently long period of time

such that the net drift can be extracted from the statistics of the unidirectional intervals of

motion. Unfortunately, the a-polar bundles are not formed by a well controlled process, but

rather through a sequence of stochastic fusion events that usually generate filaments with

disordered, random, sequences and with little residual polarities [2]. Also, in the existing

experimental setup, the bidirectional motion cannot be tracked for more than about 10

minutes, which is too short for a meaningful statistical analysis. What should be more

experimentally testable is the other elasticity effect, namely the reduction in the fraction of

connected motors. This effect, which has been attributed to the dependence of the elastic

energy on the configuration of connected motors (denoted by the vector ~C), is not limited to

a-polar filaments. Polar filaments experiencing a non-uniform distribution of motor forces

(i.e., when only a fraction of the monomers are connected to motors) will also develop a

tensile stress that could potentially alter the attachment probability of the motors. In a

future publication we plan to present a theoretical analysis of the attachment probability

for perfectly polar filaments, similar to the analysis presented here for a-polar filaments. We

also plan to investigate this effect experimentally by using a motility assay combined with

micro-manipulation technique (such as optical tweezers) to stall the gliding filament and

measure the mean force generated by the motors. In the case of perfectly polar filaments,
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the forces of all the motors are applied along the same direction and, therefore, the total

measured force should be simply proportional to the number of attached motors.
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Chapter 4

Discussion

In recent years, there has been a growing focus on the cooperative action of protein motors.

This type of research is motivated by the fact that the mechanism behind such systems is

not yet fully understood, and that its understanding is relevant for many biological systems

such as cell motility, muscle contraction, mitosis, the movement of the flagellum etc. In

this thesis, we have focused on cooperative effects which are associated with the elastic

properties of the actin filaments. We have shown that the elastic energy of the system scales

linearly with N , the number of motors, Eq. 2.5. therefore, longer filaments will have a

higher elastic energy which will lead to a smaller fraction of connected motors as we have

shown in Fig. 3.3. In chapter 2 we have studied how this effect influences the bidirectional

dynamics of a-polar filaments. This elastic effect caused τrev to have a weakly depends on

the length of the chain. Our result, which is with contradiction to a previous theoretical

result (that don’t take into account the elasticity of the actin filaments) [1], is supported by

recent experimental evidence [2]. In chapter 3 we have performed a more detailed calculation

which takes into account both the sequential order of the polarities and the positions along

the filament where the pulling forces of the motors were applied. Surprisingly, we have found

that the dynamics of the filaments is not only depended on the total polarity, but depends on
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the internal sequence of the polar monomers that assemble the filament, and that perfectly

a-polar filaments show a bidirectional dynamics with a non vanishing drift velocity.

The elastic ratchet model which we have presented in this work can, perhaps, be fur-

ther extended in order to describe other related problems such as:

(i) The intermediate fusing process: In the experiment, the polar bundles are formed by a

sequence of events. Originally, we have polar segments that move unidirectionally and fuse

with each other. At later stages, the system consists of a-polar bundles who move bidi-

rectional. However, from time to time, a filament that moves bidirectional, may suddenly

exhibit a fast unidirectional motion which would end up in a fusion with a distant filament.

This sudden transition from bidirectional to directional motion, is clearly driven by some

filament-filament interaction. If we will be able to identify the source and form of this inter-

action, we could introduce it into our model to theoretically rebuild this sudden transition.

(ii) Directional transport on elastic polar filaments: In this thesis we have focused on the

bidirectional motion of a-polar filaments, which is a natural playground when studying co-

operative dynamic effects. However, the concept of elasticity, as it has been presented in

this work, should also affect the unidirectional dynamics of polar filaments and therefore, we

believe that expanding the model in this direction is only natural.

(iii) Systems with high protein friction: Our analysis in chapter 2 which coarse grains many

molecular features into a small number of model parameters, can be rebuilt in a more de-

tailed way, were λ, the friction coefficient, will not be constant but would depend on the

length of the filament and the state of the motors, by doing so, the model could be used to

describe systems with dynamics that is strongly governed by protein friction.
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