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We use analytical calculations and Monte Carlo simulations to determine the thermal fluctuation spectrum of
a membrane patch of a few tens of nanometer in size, whose corners are located at a fixed distance d above a
plane rigid surface. Our analysis shows that the surface influence on the bilayer fluctuations can be effectively
described in terms of a uniform confining potential that grows quadratically with the height of the membrane
h relative to the surface: V= �1 /2��h2. The strength � of the harmonic confining potential vanishes when the
corners of the membrane patch are placed directly on the surface �d=0�, and achieves its maximum value when
d is of the order of a few nanometers. However, even at maximum strength, the confinement effect is quite
small and has a noticeable impact only on the amplitude of the largest bending mode.
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I. INTRODUCTION

Fatty acids and other lipids are essential to every living
organism. Because of their amphiphilic nature, they sponta-
neously self-assemble into bilayer membranes that define the
limits of cells and serve as a permeability barrier to prevent
proteins, ions, and metabolites from leaking out of the cell
and unwanted toxins from leaking in �1�. In euokaryotic
cells, membranes also surround the organelles allowing for
organization of biological processes through compartmental-
ization. In addition, biological membranes host numerous
proteins that are crucial for the mechanical stability of the
cell, and which carry out a variety of functions such as en-
ergy and signal transduction, communication, and cellular
homeostasis �2�.

An important aspect of biological membranes is that they
are typically not free but rather confined by other surround-
ing membranes, adhere to other membranes, and attach to
elastic networks such as the cytoskeleton and the extracellu-
lar matrix. Several model systems with reduced composi-
tional complexity have been designed to mimic biological
membranes. These biomimetic systems include phospholipid
bilayers deposited onto solid substrates �solid-supported
membranes� �3� or on ultrathin polymer supports �polymer-
supported membranes� �4�. With the aid of biochemical tools
and genetic engineering, supported membranes can be func-
tionalized with various membrane-associated proteins �5�.
Synthetic supported membranes with reconstituted proteins
are increasingly used as controlled idealized models for
studying key properties of cellular membranes �6�. They pro-
vide a natural environment for the immobilization of proteins
under nondenaturating conditions and in well-defined orien-
tation �7�. Another attractive application of supported mem-
branes is the design of phantom cells exhibiting well-defined
adhesive properties and receptor densities �8�. Finally, bio-
functional membranes supported by solid interfaces �semi-
conductors, metals, plastics� provide new classes of biosen-
sors, diagnostic tools, and other biocompatible materials
�5,9�.

Theoretically, the thermal shape undulations of supported
membranes have been addressed for various model systems.
These model systems include �i� membranes that adhere to

surfaces under the action of a continuum local potential
�10,11�, �ii� membranes pinned or tethered discretely to a
surface �12–15�, and �iii� membranes supported by elastic
networks of springs �16–20�. The investigation of the latter
case is largely motivated by recent studies of simple cells
�e.g., red blood cells and the lateral cortex of auditory outer
hair cells�, where the supporting cytoskeleton has a fairly
well-defined connectivity �21�. One feature, missing in many
previous theoretical studies is the influence of steric �ex-
cluded volume �EV�� interactions between the membrane
and its support on the elasticity and shape fluctuations of the
membrane. When these interactions are considered �see, e.g.,
Refs. �11,22��, it is usually assumed that the disjoining po-
tential due to the collisions between the membrane and the
underlying surface decreases inverse-quadratically with the
distance between them. This result was originally obtained in
a heuristic manner by Helfrich �23�, and later was formulated
more systematically by using a renormalization-group ap-
proach and computer simulations �see �24� and references
therein�. An instructive way to understand this result is as
follows: Consider a membrane that spans a planar square
frame of area L2. The Helfrich energy �to quadratic order� for
a nearly flat membrane in the Monge gauge is given by

H =� �

2
��2h�2d2r� , �1�

where � is the bending rigidity and h is the height of the
membrane above the frame reference plane. Dividing the
frame area into �0= �L / l�2 grid cells of microscopic area l2

�where l is of the order of the thickness of the bilayer�, and
introducing the Fourier transform of h�r��

hq =
1

L2 � d2r�h�r��eiq� ·r�, q� =
2�

L
�n1,n2�,n1,n2 = −

L

2l
, . . . ,

L

2l
,

�2�

the Helfrich energy takes the form
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H =
l4

L2�
q�

�

2
q4�hq�2, �3�

from which �by invoking the equipartition theorem� one
finds that

��hq�2	 =
kBTL2

�l4q4 , �4�

where kB is the Boltzmann factor, T is the temperature, and
q= �q� � = �2� /L��n1

2+n2
2�1/2
�2� /L�n. Using the last result,

one readily finds that the mean-square fluctuation of the
height increases quadratically with L,

�0
2 = �h�r��2	

= � l

L
�4

�
q�

��hq�2	

=
kBT

�

L2

�2��4�
q�

1

n4 
6.03kBT

�2��4�
L2. �5�

Now, consider a membrane placed between two parallel
walls positioned a distance d from each other, as shown
schematically in Fig. 1. The presence of the walls signifi-
cantly suppresses the long-wavelength thermal fluctuations
of the confined membrane. At large length scales, we may
assume that the net result of the confinement is that the mem-
brane experiences an effective harmonic potential that can be
introduced as an additional term in the Helfrich Hamiltonian,

H =� 1

2
����2h�2 + �h2�d2r� , �6�

where � is a constant that will be determined later, and h is
measured from the midplane between the walls. In Fourier
space, the energy reads

H =
l4

L2�
q�

1

2
��q4 + ���hq�2, �7�

and the spectrum of fluctuations is given by

��hq�2	 =
kBTL2

l4��q4 + ��
. �8�

If ����2� /L�4 �which is always satisfied for sufficiently
large L�, then the mean-square fluctuation of the height is
given by

�2 = �h�r��2	 = � l

L
�4

�
q�

��hq�2	 =
kBT

2����
. �9�

This result can be used for determining the value of �. Each
point of the membrane has equal probability to be found
anywhere between the walls. Therefore,

�2 =
d2

12
, �10�

and by comparing Eqs. �9� and �10�, we find that

� =
36�kBT�2

�2�d4 . �11�

Due to the thermal fluctuations, the membrane collides
with the confining walls and loses configurational entropy in
these collisions. The walls will therefore experience a dis-
joining potential. Tracing over �hq� in Eq. �7� leads to the
following expression for the Helmholtz free energy:

F =
kBT

2 �
q

ln��2l4��q4 + ��
2�L2kBT

� , �12�

where � is the thermal de Broglie wavelength of a micro-
scopic membrane patch of area l2. The disjoining pressure
between the walls is then calculated by using Eqs. �8�–�12�
as follows

p = −
1

L2

�F

�d
= −

1

L2

�F

��

��

�d
=

��

�d

�2

2
=

6�kBT�2

�2�d3 . �13�

From this result, it follows that the effective disjoining po-
tential per unit area �25�,

V = − �
	

d

p�x�dx =
3�kBT�2

�2�d2 , �14�

decays quadratically with d.

II. MEMBRANE FLUCTUATIONS NEAR A SINGLE
PLANE SURFACE

Equation �14� for the disjoining potential has been derived
for the case of a membrane fluctuating between two walls.
Does this result also hold in the case of a membrane fluctu-
ating near a single rigid wall? Consider a square membrane
of linear size L with bending rigidity � whose four corners
are held a distance d above a flat, impenetrable surface �Fig.
2�. The height of the membrane relative to the underlying
surface is denoted by the function h�x ,y�. In what follows,
we shall assume that h�x ,y� is periodic �with period L� along
both the x and y directions. The pressure due to the collisions
between the fluctuating membrane and the surface must be
repulsive. However, it is not a priori obvious why p should
be proportional to d−3, as predicted by Eq. �13�. Moreover, it
is not even intuitively clear whether this pressure should en-
hance or suppress the amplitude of the membrane thermal
fluctuations. The pinning of the edges of the membrane and
the EV interactions with the surface represent a combination
of attractive and repulsive potentials whose net effect is not

d

h

FIG. 1. A fluctuating membrane confined between two walls
that are separated from each other by a distance d. The height of the
fluctuating membrane, h, is measured from the midplane between
the walls �−d /2
h
 +d /2�.
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really well understood. A better understanding of this issue
can be obtained by comparing the configurational phase
space of our model system membrane with that of a freely
fluctuating membrane. In the free membrane case, we con-
sider the ensemble of configurations for which the spatial

average of the height, h̄
�1 /L2��h�x ,y�dxdy, is equal to

some fixed arbitrary value c. Setting h̄=c is necessary to
avoid multiple counting of physically equivalent configura-
tions invariant under a vertical translation along the z direc-
tion. �Note the difference in notation between the spatial av-
erage A�h�
�1 /L2��dxdyA�h�, which is calculated for a
specific configuration, and �A�h�	, which is the statistical me-
chanical average over the ensemble of all possible �distinct�
configurations.� The phase space of free membrane configu-
rations can be further divided into subspaces, where the
height functions h1 and h2 of each of the two configurations
included in the same subspace can be related by h1�x ,y�
=h2�x+a ,y+b� with 0�a ,b�L. In other words, all the con-
figurations in each subspace can be transformed into each
other by a horizontal translation in the x-y plane �see Fig. 3�.
This transformation does not change h̄ and, therefore, does
not exclude �introduce� allowed �forbidden� configurations

from �into� the phase space of configurations with h̄=c.
Since the Helfrich energy �Eq. �1�� is invariant under trans-
lations, all the configurations within each subspace have ex-
actly the same statistical weight. The partition function,
which involves summing over all possible configurations,
can be presented as summation over the “subspaces,”

Z = �
configurations

e−H/kBT

= �
subspaces

�e−H/kBT

= �
subspaces

e−�−kBT ln �+H�/kBT, �15�

where � is the number of configurations included in each
subspace. The last equality in the above equation can be
understood as if each subspace of the configurational phase
space is represented by only one configuration with height
function h�x ,y� whose energy is given by by the sum of
Helfrich elastic energy and an extra term that accounts for
the “degeneracy” of the corresponding subspace,

Hsubspace = − kBT ln � +� �

2
��2h�2d2r� . �16�

In the case of a free membrane, the number of configurations
in each subspace is obviously the same: �=�0= �L / l�2.
�Note that for the purpose of counting the number of con-
figurations, we henceforth assume that two configuration are
distinct only if they are shifted by at least one grid cell of
microscopic area l2 with respect to each other.�

Let us repeat the above argument for our model system
shown in Fig. 2. In this case, the mapping transformation
between configurations belonging to the same subspace in-
volves two steps: �i� a horizontal translation in the x-y plane,
and �ii� a vertical translation in the normal z direction, which
sets the height of the corners to be h�0,0�=h�0,L�=h�L ,0�
=h�L ,L�=d above the underlying surface �see Fig. 4�a��. The
Helfrich energy is invariant under these transformations.
However, the vertical translation may lead to the intersection
of the membrane with the surface and, therefore, to the ex-
clusion of the configuration from the subspace of allowed
configurations �Fig. 4�b��. The number of configurations left
in each subspace �=�(h�x ,y� ,d)
�0. Introducing the
function G(h�x ,y� ,d)
1, we can write �=�0G(h�x ,y� ,d)
and rewrite Eq. �16�,

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � �dd

d d

surface

membrane

L

L

FIG. 2. A square membrane fluctuating above a flat, impen-
etrable surface. The function h�x ,y� denotes the height of the mem-
brane above the underlying surface. At the four corners of the sur-
face h�0,0�=h�0,L�=h�L ,0�=h�L ,L�=d. Outside the frame region,
h�x ,y� is defined by periodic extension.

L

h1 h2

FIG. 3. Configurations that are represented by the height func-
tions h1�x ,y� �solid curve� and h2�x ,y� �dashed curve� belong to the
same subspace of configurations if these configurations are invari-
ant under translation in the x-y plane, i.e., h1�x ,y�=h2�x+a ,y+b�
with 0�a ,b�L.

h1

h2

h3

L

d

(a)

(b)

FIG. 4. �a� The transformation between the configurations rep-
resented by the height functions h1�x ,y� and h2�x ,y� involves �i� a
horizontal translation in the x-y plane and �ii� a vertical translation
in the normal z direction that sets the corner at h1�0,0�=h2�0,0�
=d. �b� Configurations such as the one represented by the function
h3 intersect the underlying surface and, therefore, should be ex-
cluded from the phase space.
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Hsubspace = − kBT ln �0 − kBT ln G„h�x,y�,d…

+� �

2
��2h�2d2r� . �17�

Adding the term +kBT ln �0 to Eq. �17� allows us to replace
the summation over “subspaces” back with summation over
all the possible configurations of a “free” membrane �without
a surface�. The effective Hamiltonian of this “free” mem-
brane is given by

H = − kBT ln G„h�x,y�,d… +� �

2
��2h�2d2r� . �18�

There is no EV term in this Hamiltonian �since the mem-
brane is assumed to be free�, but these interactions between
the membrane and the surface are properly accounted for by
the first term on the right-hand side, which quantifies the
effect of the surface on the configurational entropy of the
membrane.

An interesting and unexpected result can be obtained in
the d=0 limit, i.e., when the corners of the membrane are
placed directly on the surface. In this limit, the transforma-
tion defined between configurations within each subspace
�see Fig. 4�a�� will almost always generate “forbidden” con-
figurations that intersect the surface �Fig. 4�b��. Only when
the pinning point coincides with the global minimum of
h�x ,y� will the membrane be positioned above the surface
over the entire frame region. Therefore, each subspace in-
cludes only one configuration: �=1 �neglecting the
measure-zero set of configurations with multiple global
minima�, which means that G(h�x ,y� ,0)=� /�0= �l /L�2

does not depend on h�x ,y�. Substituting this result into Eq.
�18�, we find that a constant term was added to the Helfrich
energy of the free membrane. Therefore, the statistical-
mechanical properties of the pinned membrane are identical
to those of the free membrane, and, in particular, its fluctua-
tion spectrum is also given by Eq. �4�.

How can we evaluate the function G(h�x ,y� ,d) defined
above? Let us consider again the mapping transformation
between configurations belonging to the same configura-
tional subspace �Fig. 4�a��. This transformation changes the
pinning point by translating the membrane both horizontally
and vertically. The number of allowed configurations in the
subspace is determined by the number of points on the mem-
brane that can be placed a height d above the surface without
causing any part of the membrane to intersect the surface.
The set of such possible pinning points includes all the
points on the membrane for which h�x ,y�−hmin
d, where
hmin is the global minimum of the height function. These
points are located below the dashed horizontal line in Fig. 5.
Denoting by Ap(h�x ,y� ,d)�L2 the total projected area asso-
ciated with this set of possible pinning points, the function
G(h�x ,y� ,d)=Ap /L2 represents the fraction of membrane
points that satisfy the “pinning condition” h�x ,y�−hmin
d.

Let us introduce the height distribution function of the
membrane, ph�x,y��z�. For a given height function h�x ,y�,
ph�x,y��z�dz gives the fraction of membrane points for which
z�h�x ,y��z+dz. The function G(h�x ,y� ,d) is the cumula-
tive distribution function associated with ph�x,y��z�,

G�h�x,y�,d� = �
−	

hmin+d

ph�x,y��z�dz . �19�

We proceed by approximating ph�x,y��z� by a Gaussian distri-
bution function �26�

ph�x,y��z� �
1

�2��h�x,y�
exp� �z − h̄�2

2�h�x,y�
2 � , �20�

where

�h�x,y�
2 
 �h − h̄�2 = � l

L
�4

�
q��0

�hq�2. �21�

Using Eq. �20� in Eq. �19�, we find

G„h�x,y�,d… �
1

2�1 + erf�hmin − h̄ + d
�2�h�x,y�

��
=

1

2�1 + erf�− � +
d

�2�h�x,y�
�� , �22�

where erf�x�= �2 /����0
xe−u2

du is the standard error function,

and �
�h̄−hmin� /�2�h�x,y�0. The function G(h�x ,y� ,d)
given by Eq. �22� satisfies the boundary condition that G�d
→	�→1. The value of � can be set by imposing the other
boundary condition �see discussion above� that G�d=0�
= �l /L�2, which gives

� = erf−1�1 − �2l2

L2 �� . �23�

Using the Fourier representation �hq� of the function
h�x ,y� and Eqs. �18� and �22�, we find that the statistical-
mechanical properties of the pinned membrane can be de-
rived by considering a free membrane whose thermal behav-
ior is governed by the Hamiltonian,

H = − kBT ln�1

2
+

1

2
erf�− � +

d
�2�h�x,y�

�� +
l4

L2�
q�

�

2
q4�hq�2,

�24�

where � is given by Eq. �23�. The dependence of the first
term on the right-hand side of Eq. �24� on �hq� is contained
in the variable �h�x,y� �see Eq. �21��. The spectral intensity of
the pinned membrane can be calculated by using the equi-
partition theorem,

d

FIG. 5. The membrane can be pinned to the surface without
intersecting it only at points for which h�x ,y�−hmin�d, i.e., the
membrane points located below the horizontal dashed line in the
figure. Specifically, for d=0 the only possible pinning point is at the
global minimum of the function h.
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kBT = �hq

�H
�hq
� . �25�

Introducing the variable d*=−�+d /�2�h�x,y�, the right-hand
side of Eq. �25� can be written as follows:

hq

�H
�hq

= � l4

L2��q4�hq�2 − kBT� 2
��

e−�d*�2

�1 + erf�d*��� �d*

�hq

hq

= � l4

L2��q4�hq�2 + kBT� 2
��

e−�d*�2

�1 + erf�d*���
�� d

�2�h�x,y�
2 � ��h�x,y�

�hq
hq

= � l4

L2���q4 + �kBT
d

�h�x,y�
3 L2�

��� 2

�

e−�d*�2

�1 + erf�d*��
���hq�2. �26�

Equation �26� represents a set of linear equations �one for
each Fourier mode q�0�. These equations are coupled to
each other through the mean-square height fluctuation �h�x,y�
�see Eq. �21�� appearing both explicitly on the second term in
the curly brackets, as well as in the definition of the variable
d*. For both d→	 �free membrane� and d=0 �membrane
pinned directly to the surface�, the second term in the curly
brackets vanishes and, therefore, Eq. �4�, which describes the
fluctuation spectrum of a free membrane, is recovered in
these two limits, as argued above. For finite values of d, a
further approximation can be made by replacing the spatial
average �h�x,y� with �0, the ensemble average over free
membrane configurations �see Eq. �5��. This approximation
leads to the decoupling of the set of Eqs. �26� and yields the
following result:

��hq�2	 =
kBTL2

l4��q4 + �kBT
d

�0
3L2��� 2

�

e−�d*�2

�1 + erf�d*��
�� ,

�27�

where within the approximation of replacing �h�x,y� with �0,
we also set d*=−�+d /�2�0. Equation �27� has the same
form as Eq. �8�, which describes the power spectrum of a
membrane fluctuating under the action of a uniform har-
monic potential of strength,

�eff = �kBT
d

�0
3L2��� 2

�

e−�− � + �d/�2�0��2

�1 + erf�− � + d/�2�0��
� .

�28�

From Eq. �27� we conclude that the thermal height fluctua-
tions of the pinned membraned are attenuated compared to
the fluctuations of a free membrane. The mean-square fluc-
tuation amplitude of a mode with wave vector q=2�n /L is
reduced by a factor

In 

��hq��eff��2	

��hq��eff = 0��2	
=

�q4

�q4 + �eff
=

n4

n4 + n�
4 , �29�

where

n�
4 = ��eff

�
�� L

2�
�4

=
kBT

�2��4�
�dL2

�0
3 ��� 2

�

e−�− � + �d/�2�0��2

�1 + erf�− � + d/�2�0��
�

�30�

is a dimensionless number that governs the crossover be-
tween the regimes of damped �n4�n�

4� and free �n4�n�
4�

thermal fluctuations. Values of n�
4 are plotted in Fig. 6 for

different values of d and for �=10kBT and L=10l�50 nm
��=1.645—see Eq. �23��. The maximum value of n�

4 �0.34
is obtained for d�0.025−0.04L�1.25−2 nm. This value of
n�

4 �0.34 is too small to have any noticeable effect on the
spectrum of thermal fluctuations, except for the largest mode
�n=1�, whose square amplitude is suppressed by a factor of
I1�1 /1.34=0.75. In comparison, the square amplitudes of
second and third largest modes are reduced by only factors of
I�2�0.92 and I2�0.98, respectively. We also observe from
Fig. 6 that for smaller values of �, the maximum values of n�

occur at larger values of d /L. This behavior is anticipated
since the smaller �, the larger the amplitude of the thermal
fluctuations and, therefore, the greater the range of steric
repulsion between the membrane and the surface. However,
even for very soft membranes with �=3kBT, the maximum is
still reached at d /L�0.1, i.e., only a few nanometers above
the surface.

III. COMPUTER SIMULATIONS

One of the important recent advances in soft-matter simu-
lations is the development of coarse-grained �CG� bilayer
membrane models in which the membranes are simulated

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
d/L

0

0.1

0.2

0.3

0.4

n γ4

κ=10 k
B
T

κ=3 k
B
T

FIG. 6. The dimensionless parameter n�
4 �see definition in text—

Eq. �30�� as a function of the height of the pinning points from the
surface. The values have been calculated for a membrane of linear
size L=10l with bending rigidity �=10kBT �solid line� and �
=3kBT �dashed line�.
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without direct representation of the embedding solvent
�27,28�. These implicit solvent �“solvent free”� CG models
require modest CPU and memory resources and, therefore,
can be used for simulations of mesoscopically large mem-
branes over long enough time scales to address experimental
reality. Here, we use an implicit solvent CG model to test the
validity and accuracy of the analytical predictions discussed
above. A snapshot from the simulations is shown in Fig. 7.
Each lipid molecule is represented by a short string of three
spherical beads of diameter �, where one of the beads �de-
picted as a dark gray sphere in Fig. 7� represents the hydro-
philic head group and two beads �light gray spheres in Fig.
7� represent the hydrophobic tail of the lipid. The details of
the model and of the molecular simulations are given in
Refs. �29,30�, including the description of a new Monte
Carlo scheme �mode excitation Monte Carlo�, which has
been applied to accelerate the relaxation of the five largest
Fourier modes corresponding to n=1,�2,2 ,�5,�8. The
simulated system consists of a bilayer membrane of 2000
lipids and a surface �whose boundary is indicated by a thick
black line� located at z=0 below which the beads cannot be
found. The center of the head bead of one of the lipids in the
lower leaflet �indicated by a black sphere appearing at the
front of Fig. 7� is held fixed at r�= �x ,y ,z�= �0,0 ,d+� /2�.
Note that in our simulations, d is defined as the distance
between the surface and the bottom of the particle whose
position is held fixed. The simulations were carried out on
the “high performance on demand computing cluster” at Ben
Gurion University. For each value of d, the simulation results
appearing below are based on 16 independent runs, each of
1.2�106 Monte Carlo time units. The first 2�105 time units
of each run were discarded from the statistical analysis.

The simulations were conducted in the constant surface
tension ensemble, at vanishing surface tension. We set the
bead diameter, ��5 /6 nm, so that the bilayer membrane
thickness is l�6��5 nm, and the �mean� linear size of the
bilayer L= �36.4�0.1���30 nm �for all values of d�. The
spectrum of the membrane height fluctuations ��hq�2	 is plot-
ted in Fig. 8 for both d=0 and d=	 �i.e., for a freely fluc-
tuating membrane�. The computational results fully confirm
our analytical prediction that the power spectra in these two
cases are identical. By fitting the computational results to
the asymptotic form �for small values of n� Eq. �4�, we

obtain that the bending rigidity of the membrane �
��7.8�0.2�kBT.

For d�0, we expect the power spectrum of the membrane
to be “almost” identical to the power spectrum of the free
membrane. More precisely, Eq. �29� predicts that the mean-
square fluctuation amplitudes of the modes will be reduced
by a factor In, which, except for the longest n=1 mode, is
very close to unity. This prediction is very well supported by
our computational results, which are summarized in Table I.
The table gives the values I1 and I�2 �corresponding, respec-
tively, to the largest and second largest Fourier modes� for
different values of d. Within the statistical accuracy of our
simulation results, we found no change in the fluctuation
amplitudes of all the other modes corresponding to wave
numbers n�2. In order to evaluate the quantitative agree-
ment between the computational data presented in Table I
and the above analytical theory, we use Eqs. �5�, �23�, �29�,
and �30� to calculate the factor I1 for different values of d
and for the set of parameters relevant to our simulations: �

FIG. 7. Equilibrium configuration of a membrane consisting of
2000 lipids. Each lipid is represented by a trimer of one “hydro-
philic” bead �dark gray sphere� and two “hydrophobic” beads �light
gray spheres�. The membrane is fluctuating above a plane surface
�frame indicated by a thick black line�, while the position of the
center of one of the hydrophilic beads �appearing at the front of the
figure and indicated by the black sphere and an arrow� is fixed at
r�= �x ,y ,z�= �0,0 ,d+� /2�.
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<
|h

q|2 >
/L
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-4

FIG. 8. The fluctuation spectrum of a membrane of N=2000
lipids. The results for d=0 �membrane pinned directly to the sur-
face� are shown by small solid circles. These results are essentially
identical to those obtained from simulations of a free membrane
�d=	�, which are represented by larger open circles connected with
a dashed line. The solid line indicates the asymptotic ��hq�2	�n−4

power law.

TABLE I. The factors I1 and I�2 �see Eq. �29�� by which the
mean-square fluctuation amplitudes of the largest �n=1� and second
largest �n=�2� modes are reduced as compared to the square fluc-
tuation amplitudes of a free membrane. The height d denotes the
distance between the bottom of the fixed spherical bead and the
underlying surface.

d I1 I�2

0.5� 0.89 �5� 0.99 �4�
� 0.87 �6� 0.97 �4�
1.5� 0.84 �4� 0.94 �4�
2� 0.85 �4� 0.95 �4�
2.5� 0.90 �6� 0.96 �4�
3.5� 0.94 �4� 0.99 �4�
4.5� 1.00 �5� 1.00 �4�
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=7.8kBT, L=6l=36�. The results of the calculation along
with our computational results �Table I� are plotted in Fig. 9.
As can clearly be seen in the figure, the agreement between
the analytical and computational results is quite good. This
agreement lends support for the validity and accuracy of our
theoretical analysis of the fluctuation spectrum.

IV. THE DISJOINING PRESSURE

The fact that surface influence on the bilayer fluctuations
can be effectively described in terms of a uniform harmonic
potential does not imply that the disjoining pressure between
the surface and the membrane follows Eq. �13�. The pressure
can be related to Hamiltonian �24� through the following
equation:

p = −
1

L2� �H
�d
� , �31�

from which we readily derive that

p =
kBT

L2 � 1

�h�x,y�
�� 2

�

e−�− � + �d/�2�h�x,y���
2

�1 + erf�− � + d/�2�h�x,y���
�� .

�32�

Following the approach described in Sec. II, the thermal av-
erage in Eq. �32� can be approximately evaluated by replac-
ing �h�x,y� with �0 �Eq. �5��, which gives the following ex-
pression:

p =
kBT

L2�0
�� 2

�

e−�− � + �d/�2�0��2

�1 + erf�− � + d/�2�0��
�

= p*� Ce−�d*�2

�1 + erf�d*��
� 
 p*H�d*� , �33�

where p*= �kBT��1/2 /L3, d*=−�+d /�2�0, and the numerical
factor C= �2��2�2 /6.03��1/2=12.83. The scaling function
H�d*�, which is plotted in Fig. 10, decreases monotonically
with d*. At large distances �d→	� the pressure decreases as

�exp�−�d /L�2�. The maximum pressure occurs when the
membrane is in direct contact with the surface �d=0�. The
contact pressure, however, does not diverge but rather
reaches the following finite value p�d=0�
= p*H�−�� p*��C�. Using Eqs. �23� and �33�, one can
easily realize the contact pressure diminishes with the size of
the membrane patch,

p�d = 0� = p*��C erf−1�1 − �2l2/L2�� �
�kBT�

L3 ln�L

l
� .

�34�

V. CONCLUDING REMARKS

In this paper, we analyzed the influence of EV volume
effects on the statistical mechanical properties of supported
membranes. Using analytical calculations and Monte Carlo
simulations, we determined the fluctuation spectrum of a bi-
layer membrane patch of a few tens of nanometer in size
whose corners are located at a fixed distance d above a plane
rigid surface. We found that the surface has influence on the
fluctuation spectrum of the membrane only when the pinning
distance d is sufficiently small �d�0.1L—see Figs. 6 and 9�.
This result can be easily understood given the fact that the
amplitude of the height fluctuations of a free membrane
patch satisfies �0�0.02L �see Eq. �5�� and, obviously, the
membrane hardly collides with the underlying surface when
d��0. At small distances �d�0�, the surface influence on
the bilayer fluctuation spectrum resembles that of a uniform
harmonic confining potential of the form V= �1 /2��eff�d�h2.
Both analytically and computationally we find that the
strength �eff�d� of the effective harmonic potential is ex-
tremely small and has a noticeable impact only on the am-
plitudes of the very largest fluctuation modes. More remark-
ably, the confinement effect vanishes ��eff�d�=0� when the
membrane is brought into direct contact with the surface �d
=0�. This unexpected and counterintuitive result can be ex-
plained by the fact that the thermal motion of the membrane
is not really confined within a finite spatial region �as in a
stack of bilayer membranes� but only restricted on one side.
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FIG. 9. The factor I1 as a function of d. Solid circles, computa-
tional results �see also Table I�. Solid line, analytical results for the
computationally relevant parameters: L=6l and �=7.8kBT.
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FIG. 10. The scaling function H�d*� �see definition—Eq.
�33��.
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Therefore, the primary effect of the collisions with the un-
derlying surface is to push the membrane “upward” rather
than to suppress the amplitude of the fluctuations. This is
also the reason why the disjoining pressure does not diverge
when d vanishes.

The significance of our findings should be considered in
light of previous theoretical attempts to quantify the steric
effects between membranes and underlying supported inter-
faces. Some of these studies describe the wall-membrane
pressure by means of Eq. �13�, which we have shown to be
irrelevant for this problem. One particular problem that
should be reanalyzed in light of our new results is the theo-
retical interpretation of the fluctuation spectra of red blood
cells �31�. The plasma membrane of red blood cells is at-
tached to a triangulated network of flexible spectrin proteins
with mesh size ��60–100 nm. The spectrum of red blood
cell fluctuations was analyzed in terms of the Helfrich
Hamiltonian with both curvature and scale-dependent sur-
face tension terms, where the latter term originates from the
coupling to the cytoskeleton. Using a Gaussian network
model, Fournier et al. �17,18� showed that the effective sur-
face tension exhibits a steep crossover from a vanishingly
small value at length scales smaller than � to some finite
value at scales larger than �. Gov et al. �16,21� argued that,
in addition, a uniform harmonic potential term must be in-
troduced in the Helfrich effective surface Hamiltonian,
which accounts for the confinement effect due to the steric
repulsion between the spectrin and the bilayer. Our statistical
mechanical analysis partially supports this phenomenological
argument. On the one hand, our Eq. �27� can be interpreted

in terms of a uniform harmonic potential that acts on the
membrane. On the other hand, our estimation of the strength
of the effective harmonic potential makes it questionable
whether the origin of it can be attributed to EV interactions
�between the bilayer and the spectrin� alone. It seems more
likely to relate this additional confinement term to the junc-
tional complexes �of short actin filaments, globular band 4.1,
and other proteins� which connect the membrane to the cy-
toskeleton and restrict the membrane height fluctuations
around the points of attachment. We thus speculate that, just
like the surface tension, the strength of the effective har-
monic potential �eff must also be scale-dependent. At length
scales below the mesh size, we expect the value of �eff to be
governed by EV effects and, therefore, to be extremely
small. Above the mesh size, the strength of the harmonic
confinement will be determined by the strength of the peri-
odic pinning of the membrane to the cytoskeleton, which,
presumably, results in a larger value of �eff. It should be
stressed here that there is currently no proof �or even a rea-
soned argument� that the long-wavelength fluctuations of red
cells are indeed harmonically confined. One should also bear
in mind that on the scale of the mesh size of the network, the
problem is quite intricate and issues such as connectivity
defects and the motion of the protein anchors must be prop-
erly addressed.
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