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Fluctuation-induced attraction between adhesion sites of supported membranes

Oded Farago
Department of Biomedical Engineering, Ben Gurion University, Be’er Sheva 84105, Israel
(Received 21 December 2009; published 21 May 2010)

We use scaling arguments and coarse-grained Monte Carlo simulations to study the fluctuation-mediated
interactions between a pair of adhesion sites of a bilayer membrane and a supporting surface. We find that the
potential of mean force is an infinitely long range attractive potential that grows logarithmically with the pair
distance r: ¢(F)/kgT=c In r, where the constant ¢c=2 and c¢=1 for nonstressed and stressed membranes, re-
spectively. When, in addition to excluded volume repulsion, the membrane also interacts with the underlying
surface through a height-dependent attractive potential, the potential ¢(7) is screened at large pair distances.
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Supported lipid membranes are useful and important
model systems for studying cell membrane properties and
membrane-mediated processes [1,2]. Placing a membrane on
a flat substrate allows for the application of several different
surface sensitive techniques, including atomic force micros-
copy, x-ray and neutron diffraction, ellipsometry, nuclear
magnetic resonance, and others [3]. With the aid of bio-
chemical tools and generic engineering, supported mem-
branes can be functionalized with various membrane-
associated proteins [4]. One attractive application of
supported membranes is the design of phantom cells exhib-
iting well-defined adhesive properties and receptor densities
[5]. Using advanced imaging techniques, detailed informa-
tion can be obtained about the structure of the adhesion zone
between the receptor-functionalized supported membrane
and ligand-containing vesicles that can bind to the supported
membrane [6,7]. These studies provide insight into the spe-
cific (ligand-receptor) and nonspecific interactions during
cell adhesion [8,9]. Understanding these interactions is cru-
cial for the development of drug delivery systems that de-
pend on efficient adhesion between a liposome and the
plasma membrane of the target cell.

Adhesion is an immensely complex process involving
many physiochemical and biomolecular factors [10]. Many
aspects of this process, ranging from the cooperativity in
adhesion cluster formation to the influence of stochastic pro-
cesses such as the ligand-receptor reaction kinetics, have
been and continue to be studied theoretically using various
models (see, e.g., recent reviews in Refs. [11,12]). In light of
this extensive theoretical effort, it is surprising that there is
still no satisfactory answer to one of the most fundamental
problems associated with adhesion, namely, the characteriza-
tion of the membrane-mediated interaction between adhesion
sites. Detailed knowledge of the strength and range of these
interactions is essential for a better understanding of the role
they play during the self-assembly of adhesion zones. The
lack of theoretical studies of membrane-mediated interac-
tions between adhesion sites is in striking contrast with the
extensive literature existing on membrane-mediated interac-
tions between transmembrane proteins. In the latter case, the
origin of the interactions is the ability of two proteins to
position themselves in a manner that minimizes the total
bending elastic energy of the deformed membrane [13]. In
addition, the influence of the proteins on the membrane ther-
mal fluctuations leads to membrane-mediated interactions
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between them, which are analogous to Casimir forces be-
tween conducting plates [14]. These interactions fall off with
the protein pair separation as 1/7* [13-15] and, therefore, at
large distances they are considerably larger than van der
Waals and screened electrostatic interactions which decay
much faster with r. Since adhesion sites between membranes
or between a membrane and a surface represent a different
type of “constraint” on the shape of the membrane, one can
expect Casimir-like interactions to exist between them as
well. Below, we explore these interactions for a pair of ad-
hesion sites between a membrane and a flat impenetrable
surface and show that these interactions are of effective in-
finite range.

Consider a membrane of linear size L with bending ri-
gidify « and surface tension o, which may also experience a
height-dependent harmonic confining potential (whose sec-
ond derivative with respect to the height is y) due to the
presence of a nearby flat surface. Let /() be the height func-
tion of the membrane, which vanishes at the points where the
membrane is attached to the surface and takes positive vales
everywhere else. The total energy of the membrane is, thus,
given by the effective Hamiltonian

H= f %[K(Vzh)2+0(ﬁh)2+ e, (1)

where @ represents the hard-wall constraint (=1 for &
=0, and ® =+ for 1<0), and the integration is taken over
the cross-sectional (projected) area of the membranes A,
~L?. Let us first consider the case where =0 and y=0 in
Eq. (1). In a previous publication we studied the behavior of
a membrane with one attachment site to the surface [16]. We
found, quite unexpectedly, that the attachment of the mem-
brane to a flat surface at only single adhesion point does not
modify the spectrum of thermal fluctuation of the membrane.
The only effect of the attachment is to eliminate the mem-
brane translational degree of freedom by enforcing that the
global minimum of the height function A(7) is achieved at the
point of contact with the surface. Without the surface (i.e.,
for a freely fluctuating membrane), the manifold could be
translated horizontally and the global minimum could be
transferred to any place within the cross-sectional area 7
eAp. The attachment free-energy cost is, therefore, AF
=kpT In(A,/1?)=2kT In(L/1), where kg is the Boltzmann
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constant, T is the temperature, and / iS some microscopic
length scale on the order of the bilayer thickness. The scaling
behavior of AF with L can be also obtained by noting that
because the single attachment point leaves the spectrum of
thermal fluctuation unchanged, the mean height of the mem-
brane above the surface increases as u(r)=(h(r))
~r(\kgT/ k) with r as the distance from the pinning site
[16,17]. Helfrich showed that, as a result of the collisions
between the membrane and the surface, there is an effective
interaction energy per unit area: V(r)~ (kzT)?/ku(r)?
~ (kgT)/7* [18]. By integrating this energy density over the
projected area of the membrane, one finds that

AF:J\«ﬂf*:C@Th(%). (2)
An equation very similar to Eq. (2) has been previously de-
rived in Ref. [17] in the context of self-assembly of mem-
brane junctions. In that reference, the mean-field free energy
per adhesion site was found to have a logarithmic depen-
dence on the mean distance between sites. This result has
been interpreted as a renormalization of the temperature
downward. Our finding that C=2 implies that the attachment
free energy (2) exactly cancels the mixing entropy term of
the adhesion sites and, therefore, the renormalized tempera-
ture 7,=0. The inability of this simple mean-field calculation
to predict whether the adhesion sites tend to aggregate (7,
<0) or segregate (7,>0) emphasizes the need for a more
detailed analysis of the membrane-mediated interactions that
also take into account their many-body nature. We leave
most of the discussion of many-body effects to a future pub-
lication and focus here on the pair-correlation function be-
tween adhesion sites.

The attachment free energy (2) is distributed within a vol-
ume V~L?A,, where Ag=u(L)~L\kgT/Kk is the mean
height of the membrane. It, therefore, seems reasonable to
speculate that disjoining pressure between the membrane and
the surface scales as

P ~ AF/V ~ \kgTk/L? In(L/1). (3)

The pressure between the membrane and the underlying sur-
face is not uniform, however, but rather decreases with r
because points on the manifold that are closer to the attach-
ment site tend to collide more frequently with the surface.
Defining the distance-dependent pressure P(r), the mean dis-
joining pressure can be calculated by P~ (1/L%)[ ,LrP(r)dr,
which can_be reconciled with Eq. (3) by assuming that
P(r) ~kgTk/Lr*. Since the pressure is caused by collisions
between the membrane and the surface, one may conclude
that the probability density that the membrane comes into
contact with the surface at distance r from the attachment
point has the same scaling behavior as P(r),

MEA(A =01 ~ P(A ~ . @)

Let us now turn to the problem of a supported membrane
with two adhesion points. Let #=7 denote the position of the
second adhesion point within the cross-sectional area of the
membrane, while the first adhesion point is fixed at the ori-
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gin, 7= 0. The potential of mean force between the adhesion
sites is defined as (7)) =—kgT In[g(7))], where g(7,) is the
pair distribution function expressed as a function of the co-
ordinate of the second adhesion site. By definition, g(7,)

=7(0 o)/ 7(0), where Z(0) and Z(0 ,Fy) denote the partition
functions of membranes with one (at 0) and two (at 0 and 7o)
adhesion sites, respectively. However, the ratio Z(0 7o)/ Z(0)
is also equal to II[A(#))=0], the probability density that a
configuration with an adhesion site at 7=0 makes contact
with the surface at 7, as well. We thus conclude that g(7,)
=I1[h(7))=0], and together with Eq. (4), we arrive at the
following scaling result for the pair-correlation function:

g(7o) ~ /1. (5)

From this we find that the potential of mean force between
the two adhesion sites is an infinitely long range attractive
potential that grows logarithmically with the pair distance r:
@(7y) =—kpT In[g(7y)]=2kpT In(r).

We tested the validity of Eq. (5) by using constant
surface-tension (frame tension) Monte Carlo (MC) simula-
tions of a coarse-grained implicit solvent bilayer model. The
details of the model (which is suitable for simulations of
bilayer membranes at large spatial and temporal scales) and
simulations can be found in Ref. [16], where we discuss the
problem of a membrane with one attachment point to the
surface. In the present work, we have a flat surface and 2000
coarse-grained lipids that form a square bilayer patch of lin-
ear size L. Each lipid is represented by a short string consist-
ing of one head bead and two tail beads. The lipids reside on
one side of the surface. Two lipids are attached to surface at
their head beads. The location of one of these head beads is
fixed at the origin, while the second head bead is allowed to
diffuse on the flat surface. By sampling the position of the
latter bead, the pair distribution function can be computed
and compared with the power-law distribution [Eq. (5)].
There is, however, a problem with this seemingly straightfor-
ward strategy. The simulation time must be much longer than
both (i) the typical relaxation time of the longest bending
mode and (ii) the typical diffusion time across the membrane
of the mobile adhesion point. Unfortunately, both these char-
acteristic times grow very rapidly with L, in a way that
makes the application of the standard Metropolis MC algo-
rithm impractical. To overcome this problem we used two
“tricks”: the relaxation times of the thermal bending modes
were reduced by applying the recently proposed “mode ex-
citation MC” (MEMC) scheme [19]. The MEMC scheme
utilizes collective update moves that lead to fast excitation
and relaxation of the long-wavelength modes. The problem
arising from the slow diffusion of the mobile adhesion point
was solved by identifying the unpinned lipid whose head
group is located closest to the surface and introducing a new
MC move that attempts to place this lipid on the surface
while lifting the mobile pinned lipid away from the surface.
More precisely, if the height of the closest unpinned head
group to the surface is i, >0, the move attempt consists of a
simultaneous change in the heights of all the beads of both
the unpinned and pinned lipids—the former are reduced by
hgy, while the latter are increased by /(. One can easily verify
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FIG. 1. The pair-correlation function g(7) of a nonstressed mem-
brane vs the pair distance r. The slope of the dashed straight line is
-2.

that for this new type of MC move, detailed balance is sat-
isfied by the conventional Metropolis acceptance rule:
p(old—new)=min[1,exp(-AE/kzT)], where AE is the en-
ergy change caused by the move attempt. The new move
allows the mobile pinning site to “jump” from one place on
the membrane to another and enables efficient sampling of
the pair-correlation function g(#,) within a reasonable simu-
lation time.

Our results, which are shown in Fig. 1, agree very well
with the functional form predicted in Eq. (5). The slope of
the straight line on the log-log plot is equal to —2. Deviations
from the power-law behavior g(7) ~ 1/ can be observed at
small (r/L<0.05) and large (r/L>0.5) distances only. At
small separations, the molecular nature of the lipids becomes
important and the radial pair distribution function is domi-
nated by the depletion shells around the lipids. At large dis-
tances, the mobile adhesion site reaches the center of the
square membrane where it becomes attracted not only by the
fixed adhesion site but also by its periodic images. In this
regime, the many-body nature of the membrane-mediated
potential must be taken into account.

Let us now consider the case of a membrane which is also
subjected to lateral surface tension o>0 [see Eq. (1)]. For a
stressed membrane, one can define the ‘“surface-tension
crossover length,” &,~ Vk/ o, which marks a crossover be-
tween two regimes. On length scales much smaller than &,
the thermal fluctuations are governed by the bending elastic-
ity of the membrane while the surface-tension term in Eq. (1)
is negligible. Therefore, for r < £, one can expect Eq. (5) for
the pair-correlation function to hold. On length scales much
larger than &, the surface-tension term in Eq. (1) becomes
dominant, which leads to the suppression of the long-
wavelength thermal fluctuations. Consequently, for r>§,,
the decay of the pair-correlation function should be slower
than that predicted by Eq. (5). The behavior of g(7) in this
regime can be derived using the following argument: let i(7)
be the height function of the stressed membrane. Define the
function H(7) such that x(V2H)?>=a(Vh)2 The manifold de-
picted by the function H represents a nonstressed bilayer
membrane, and from Eq. (4) we have that TI[H(7)=0]
~1/r%. At large r, the two functions can be related by the
simple scaling relation «H?/r*~coh?/r?, ie., h(r)
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FIG. 2. The pair-correlation function g(7) of a stressed mem-
brane vs the pair distance r. The slopes of the solid and dashed
straight lines are —2 and —1, respectively.

~(&,/r)H(r) [20]. This scaling relationship implies that the
probability density I1[A(F)=0]~ (r/ E,)II[H(F)=0]. As previ-
ously noted, the function I1[A(#)=0] is, in fact, the pair dis-
tribution function, which leads us to conclude that in the
surface-tension dominated regime, r> &,: g(¥)~ (r/ €,)1/7r?
~1/r. The potential of mean force, @(F)=—kzT In[g(7)]
=kgT In(r), simply decreases to half of the value of ¢(7) in
nonstressed membranes. Notice that this form is independent
of o whose magnitude influences only the crossover length
&, between the two scaling regimes. Figure 2 shows our
simulation results for a membrane with surface tension o
=3.6kyT/ 1%, where the microscopic length scale [ is taken as
the length of the three-bead model lipid (/ ~2 nm; the linear
size of the membrane patch in our simulations L~ 12.51).
The two scaling regimes with g(7)~ 1/ for small r and
g(7) ~1/r for large r can be clearly seen. In a previous paper
we measured the bending rigidity of the membrane and
found k~8kgT [19]. This gives &,~ 1.51~0.12L, which is
consistent with Fig. 2 where the crossover between the scal-
ing regimes takes place around r~ 0.25L.

For a nonstressed membrane experiencing a harmonic
confining potential [y>0 in Eq. (1)], the “harmonic confine-
ment crossover length,” &,~ («/7y)", can be defined which
marks the transition between two scaling regimes. For r
<¢,, the thermal fluctuations are dominated by the bending-
rigidity term in the Hamiltonian and, therefore, g(7#)~1/r°.
For r> £, the fluctuation spectrum is dominated by the har-
monic confinement term. Since this term is a local one, the
influence of the adhesion site is screened and pair-correlation
function saturates to a constant value, g(7) ~ Y, which means
that fluctuation-mediated force between the adhesion sites
vanishes [21]. To verify these predictions, we added an en-
ergy term for each lipid in our model, E=(1/2)y"h?, which is
proportional to the square of the height #; of the lipid. The
variable y" is related to y in Eq. (1) by 2v*/a=y, where a is
the cross-sectional area per lipid and the factor of 2 is due to
the two leaflets of the membranes. Here, we take y*=0.072,
which together with the previously computed value a
=0.151* [19] gives y=0.096kzT/I*. This yields, &,~3I
~0.25L. The results, presented in Fig. 3, show the two scal-
ing regimes for small and large r, where the crossover be-
tween them occurs at »~0.3L.

To conclude, we have calculated the membrane-mediated
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FIG. 3. The pair-correlation function g(7) of a membrane expe-
riencing harmonic confining potential vs the pair distance r. The
slopes of the solid and dashed straight lines are -2 and O,
respectively.

interactions between two adhesion sites of a bilayer mem-
brane and a supporting flat surface. We found that the poten-
tial of mean force is an infinitely long range attractive poten-
tial that grows logarithmically with the pair distance r:
¢(7)/kgT=c In r. The constant ¢ takes three possible values
depending on which term in Eq. (1) dominates the effective
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Hamiltonian of the system: c¢=2 in the bending-rigidity
dominated regime (which always prevails at small pair sepa-
rations), c=1 in the surface-tension dominated regime, and
¢=0 in the regime where the dominant term is of the har-
monic confinement. It is important to note that even when
¢=2 at all pair separations [i.e., for =0 and y=0 in Eq. (1)],
the membrane-mediated attractive potential is not strong
enough to bind the pair of adhesion sites. The pair-
correlation function in this case, g(#)~1/r%, and the mean
pair separation increases with the size of the system: (r)
=[Tr2g(r)dr/ [Frg(r)dr~L/In L. This, however, does not
render the fluctuation-mediated interactions between adhe-
sion sites unimportant. These interactions may very well pro-
vide a powerful aggregation mechanism of receptor-ligand
binding domains. In order to correctly analyze the aggrega-
tion behavior of an ensemble of adhesion sites, one must take
into account the many-body nature of the fluctuation-induced
interactions between them. Such a study is currently
underway.
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