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We expand on two previous developments in the modeling of discrete-time Langevin systems. One is the
well-documented Grgnbech-Jensen Farago (GJF) thermostat, which has been demonstrated to give robust and
accurate configurational sampling of the phase space. Another is the recent discovery that also kinetics can
be accurately sampled for the GJF method. Through a complete investigation of all possible finite-difference
approximations to the velocity, we arrive at two main conclusions: (1) It is not possible to define a so-called
on-site velocity such that kinetic temperature will be correct and independent of the time step, and (2) there
exists a set of infinitely many possibilities for defining a two-point (leap-frog) velocity that measures kinetic
energy correctly for linear systems in addition to the correct configurational statistics obtained from the GJF
algorithm. We give explicit expressions for the possible definitions, and we incorporate these into convenient
and practical algorithmic forms of the normal Verlet-type algorithms along with a set of suggested criteria for

selecting a useful definition of velocity.
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I. INTRODUCTION

Simulations of statistical properties in complex systems
have been a subject of intense interest for the past several
decades [1-3], especially in the area of molecular dynamics,
where thermodynamic ensembles are sampled by follow-
ing the temporal evolution of large numbers of interacting
particles. This is done by numerically integrating Newton’s
equation of motion of each particle. The most commonly
used algorithm for this purpose is the one proposed by Verlet
[4], which is correct to second order in the integration time
step, dt, and conserves energy in long-time integrations. The
Verlet algorithm samples the microcanonical ensemble, but
the more frequently used ensemble in statistical mechanics is
the canonical (N, V, T) ensemble where the temperature of
the system, rather than its energy, is constant. Many methods
for controlling the temperature of a simulated system (ther-
mostats) have been developed, and most of them fall into two
major categories: deterministic (e.g., Nosé-Hoover [5,6]) and
stochastic (Langevin) thermostats [7-16]. The deterministic
approach includes additional degrees of freedom, which act
as an energy reservoir and thereby mimic a thermal heat bath.
A requirement for such method is that the temperature of a
simulated system can be reliably measured in order for the
system to interact properly with the heat bath. The stochastic
approach is based on the assumption that each particle in the
system has its behavior modeled by a Langevin equation [17]

mv+oar = f+ B, (1)

where m is the mass of an object with spatial coordinate, r,
and velocity v = 7 and f is the force acting on the coordi-
nate. This is Newton’s second law with two additional terms
representing the interactions with a heat bath: (i) linear (in v)
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friction, which is represented by the friction constant o > 0,
and stochastic white noise, 8(¢), which can be chosen to be a
Gaussian distributed variable. These terms are thermodynam-
ically matched through the fluctuation-dissipation theorem
by [18]

(B@)) =0, 2
(BOB() = 2akpT (1 — 1), 3)
where kg is Boltzmann’s constant and 7 is the thermodynamic

temperature.

Integrating numerically a Langevin equation of motion
poses a challenge since discrete time tends to distort the
conjugated relationship between the positional coordinate and
its corresponding momentum (see Appendix in Ref. [19]).
A resulting problem is that the kinetic and configurational
measures of temperature disagree, which is a concern for
both the integrity of a simulation and the extraction of self-
consistent information that may depend on configurational
as well as kinetic sampling. It is therefore imperative to un-
derstand how to properly define a kinetic measure consistent
with the statistics from the trajectory. We note that the issue
of defining configurational temperatures for also investigating
nonequilibrium ensembles have been extensively pursued in,
e.g., Refs. [20-23]. As our concern in this paper is to devise
kinetically predictable velocity definitions that accompany the
GIJF method in equilibrium, we will not directly be addressing
the configurational temperature, since the GJF method is
already known to provide time-step-independent configura-
tional sampling in equilibrium [15,24].

The possibility of creating a discrete-time simulation
method that gives statistically sound results for both
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configurational and kinetic measures was first reported in
Ref. [19], where the statistically correct 2GJ half-step velocity
was identified and comprehensively demonstrated to give
robust (i.e., independent of the integration time step, dt, for
the entire stability range of time steps) statistics for both
nonlinear and complex molecular systems. The algorithm,
which is rooted in the statistically sound spatial trajectory
of the GJF algorithm [15,24,25], is formulated in a typical
leap-frog (LF) form that is easily implemented into existing
molecular dynamics codes. Subsequently, a related formu-
lation of the GJF algorithm, with similar kinetic averages,
has been identified [26]. It is the objective of this paper to
demonstrate that there exists a large set of kinetically correct
velocity definitions given by one free parameter and that this
set includes the reported velocities [19,26].

II. DISCRETE-TIME LANGEVIN DYNAMICS
Since the starting point of this work is the spatial GJF
trajectory, we give a brief review of the features of this method
here. The GJF algorithm for simulating Eq. (1) in discrete time
is [15]

dr? dt
P = bl dev" + — "+ — B, 4)
2m 2m

dt b
V' = av" + —(af" + Y+ =gt )
2m m

where ", v", and f" are the discrete-time GJF position,

velocity, and force, respectively, at time #,, and where

-
= e ©)
1
=—", (N
1“1‘%

are the coefficients that define the discrete-time attenuation.
The associated discrete-time noise is

Lnt1

! = Bt (8)

In

which results in an uncorrelated Gaussian random variable
with zero mean and a variance given by the temperature and
friction coefficient:

(B") =0, 9)

(B"B") = 2akpTdt$,,;, (10)

where §,, ; is the Kronecker § function.

As was pointed out in Ref. [15], the basic thermodynamic
properties for a flat potential, f = 0 are well behaved. The
equipartition theorem for the kinetic energy is satisfied:

(Ex) = 3m{(")") = 3kgT, (11)
and the configurational Einstein diffusion,

n _ ..0)2 knT
Dy = lim (=7 = B (12)
ndt— oo 2ndt o
yields the correct expectation for any set of simulation param-

eters, including the time step. Appendix A shows that also

the Green-Kubo evaluation of diffusion can yield the correct
value Dy if a particular Riemann approximation is applied to
the Green-Kubo integral.

Notice that the velocity attenuation factor a (Jal < 1) in
Eq. (6) is negative for time steps larger than

dt, = 2m/a. (13)

Choosing dt > dt, does not affect the robust configurational
sampling properties of the GJF method [15], but (as will be
discussed below) it may lead to certain nonphysical features
of the discrete-time velocity autocorrelation.

A. GJF for linear systems, f = —«r

While the kinetic measure of diffusion in a flat potential
can be defined correctly for the GJF velocity variable, the har-
monic oscillator, given by f* = —kr" with « > 0, shows how
configurational and kinetic statistics are no longer mutually
consistent when the potential has curvature. In Ref. [15], we
showed that for n — oo

1

1
(E,) = §x<<r")2> = ksl (14)

1 O | (Qdt)?
(Ex) —§m<(v )) = szT[l— ) ] (15)

where ¢ = /k/m is the natural frequency of the oscillator.
These results hold for any time step smaller than the Verlet
stability limit Q¢dt < 2. The appealing features of the GJF
algorithm is given by Egs. (12) and (14) as these indicate
sound results for configurational statistics, which is the aim
of computer simulation studies of, e.g., molecular systems
at equilibrium. As promoted in Ref. [19], the discrete-time
velocity is predominantly an auxiliary variable, which for
simulations of equilibrium is used primarily for assessing the
temperature of the simulated system via the mean kinetic
energy. Since £2p is an expression of the curvature of the
potential, Eq. (15) shows that a general system cannot be
simulated with a correct kinetic statistical measure using the
GIJF velocity Eq. (5).

With the useful GJF spatial trajectory and the accompa-
nying depressed on-site GJF velocity, v”", which results in
imperfect kinetic statistics, we here investigate the kinetic
response of all finite-difference velocities.

B. A general finite-difference velocity

Since the aim of this section is to explore velocity defini-
tions that may accompany the GJF trajectory, it is natural to
write the GJF method in its Stgrmer-Verlet form [19,24]:

n+1 n n—1 bd[z n bdt n n+1
" =2br" —ar" + —f" 4+ — "+ "), (16)
m 2m

with the GJF velocity Eq. (5) expressed as [19]
rn+l — (1 —-ar" — arn—l n __ pn+l
( ) n " —B

2bdt 4m

Inspired by Eq. (17), we define a velocity w in the general
finite-difference form
w — nr'" oy st Bt s

, 18
7 + - (18)

v =

7)
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where y; are unitless constants that are to be determined, and
where the two noise terms, 8" and ,3”‘“, span the time interval
of the finite difference, #,_; <t < t,4 [see Eq. (8)]. Notice
that we have not attached a superscript on w that indicates
at which time this velocity is represented, since this general
expression is representing any velocity approximation in the
interval spanned by the finite difference. Specifically, we
recognize the usual three-point on-site and two-point half-step
velocities in the frictionless (o« = 0) Verlet algorithm,

pitl -l
V=T 19
n+l _ .n
o — rd—tr (20)

for yy=—y3=13. »=n=y=0 and yy=-p =1,
y3 = ya = y5 = 0, respectively. We also recognize the GJF
velocity, v", in Eq. (17), as represented by y; = 1/2b, y, =
—(1—a)/2b, v = —a/2b, ys = —ys = 1/4.

We start by writing the most basic statistical requirement
to a velocity variable, namely

kgT

m

(ww) = 21

Using Eqgs. (16) and (18), (ww) can be rewritten

_rtvitys
dt?
Y1V3
de?
V1V4 | nil on Y1Vs5 + Vo Va
22— 2"
+ mdt A+ mdt

From Egs. (10), (14), and (16) we obtain the relevant correla-
tions:

vty
dr?

2 2

Vi TV5 , onon

2SS (prp)

m2

(ww) (r"r"y + 2 (rr

_|_2 <rn—1rn+l>+

(r'p"). (22

(B"r"y = (b — a)kgT dt, (23)

(B = (2 +a— bQid1*) (b — a)ksT dt,  (24)

ksT Q3dr?
(r"r"+1)=3_<1—b °2t ) (25)

K
n—1_n+1 kBT 27,2 Zdit4
(") = — |1 =bb+ 1)Qdt" + b | (26)
K
which, when inserted into Eq. (22), yield

mww)  yE+vi+vi+20n7+ v+ vv)
kT Q2ar?

—bly1y2 + v2y3 +2(1 + b)ysyi]

1-b
+4(ys + J/sz)T +4( = D)y1ys + v2va

+ (1 +2b)y17al + Qadi*byi [bys — 4(1 = b)ya] .

27)

While this expression is somewhat cumbersome, it immedi-
ately reveals key information about possible definitions of

kinetically robust velocities to accompany the GJF trajectory.
First, from the requirement that Eq. (21) is satisfied for any

(stable) dt, it follows that the terms in Eq. (27) proportional
to both (0d?)~% and (Qdt)? must be zero. Thus, we must
require that

0=yl +v +1vi+2nn+ny+rn), (28)

0 = by1[bys — 4(1 — b)ys]. (29)

Second, since w represents the velocity during the time
interval f, <t < t,4;, we will further require that y; # 0.
Moreover, in the limit adt — 0 (a,b — 1, " = "t =0)
the coefficient y; should become either y; — % or y; — 1,
such that w becomes one of the two known velocities given
in Egs. (19) and (20) in that limit. Under these conditions,

Eq. (29) yields the following noise term associated with §":

b y3y/ 20kgT dt " = 2mys ZkB—T o, (30)
1-b adt
where " € N(0, 1) is a random number with a standard
normal distribution. The requirement for 4 to be confined is
that 3 — 0 faster than (adt)% for adt — 0. This condition,
however, cannot be met by on-site velocity variables v”, which
in the limit adt — 0 must coincide with Eq. (19), where
Y= —y3 = % # 0, and the limit y; — —% would create a di-
verging noise term in any on-site velocity definition as adt —
0. We therefore conclude that no reasonable on-site finite-
difference velocity that has correct and time-step-independent
kinetic statistics can be defined such that it will approach
the expected central difference approximation in the limit
adt — 0.

yaB" =

C. Two-point velocity, y; = y;, =0

In light of Eq. (20), we will throughout this paper denote a
two-point velocity w = u™ 1 as one given by Eq. (18) with
y3 = y4 = 0, such that the value of the denoted two-point
velocity pertains to the time interval t, <t < #,41.

Setting y3 = y4 = 0, considerately simplifies Eq. (27) to

ml(@ )’} gn + )
kT~ Q2ar?

1—-b
—byiys + 4y§7 +4(1 —byyys. (3

With the requirement that Eq. (21) holds for any d¢, we have
y1 = —Y», which then yields the condition:

1-b
by} +47y3 +4(1 —byys = 1. (32)

From this expression, we can determine ys as a function of a

given y;:
1 1 [ 1—b2y?
= ——by; + =,/ b——L, 33
¥s v xS\ b, (33)

which implies that (by;)? < 1. We will also require that y; —
1 for b — 1 in order to recover the corresponding velocity
in the limit of either continuous time or no friction, adt — 0
[see discussion above, after Eq. (29)]. Thus, we have identified
a family of velocities that yield the correct average kinetic
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energy in discrete time:

. rn+1 —

un+§ =M
v dt

4 E ,3”+1 , (3 4)
m
where ys is determined by the parameter y;, which is limited
in magnitude by |by;| < 1.
Using Eq. (34) for the velocity, together with Eq. (16)
for the GJF trajectory, we arrive for y; # 0 at the following
general LF GJF algorithm:

bdt r r
W= a4+ n—r"+ —4f3n + —S,BHI’ (35)
dt dt
I"hLl — + = unJr% _ ﬁ_ﬁfﬂrl’ (36)
Vi yim
where
Iy = by —2ays, @37
s = byr + 2ys. (38)

The general scheme Eqgs. (35)—(38) can be also written in the
following form, involving both the denoted two-point velocity,
w172 and the on-site velocity, v", expressed in Egs. (5) and
17):

1 1 Ts dt
n+s — b n = =9 pntl o , 39
u J/1|:U +2mby15 +2mf:| (39
dt dt
rn+1 — rn + — un+% _ E_’BiH-l, (40)
4! yim
ntl _ 4l Lﬂ nt1 ﬂ nt1 41
v by ! 2m by, o 2mf - @D

This compact form of the method further illuminates the
meaning of the parameter y; beyond the direct scaling of the
finite-difference two-point velocity, observed in Eq. (34). As
mentioned at the beginning of Sec. II, the total attenuation
factor of the velocity over one time step is a, and this factor
is shown in Egs. (39)-(41) to be partitioned into two parts:
The first is the attenuation by; of the velocity v” into the
velocity u”+%; the second is the attenuation a/by; of the
velocity #"*2 into v"*!. The product of the two attenuation
factors is obviously a. It is physically reasonable to expect that
the attenuation factor is positive and not larger than unity in
either of the two parts of the time step. A negative attenuation
factor by, implies a peculiar velocity that is in directional
opposition to the surrounding trajectory, whereas a factor
which is greater than unity implies velocity amplification.
Thus, in order to have a physically meaningful description of
the velocity attenuation, we must choose (i) a > 0 [dt < dt,;
see discussion around Eq. (13)] and (ii) a < by; < 1. With
that said, we reemphasize that any velocity defined by Eq. (34)
will always yield the correct average of the kinetic energy and
that this form only requires that |by;| < 1.

D. Special cases

We now highlight the following three choices of y; as
examples of velocity definitions:

Case A: /by, =1, ys =0. This is the 2GJ half-step
velocity given in Ref. [19],

Uy Todr (42)
and it is the optimal amplitude rescaling y; of the standard
definition Eq. (20), since it is the only form where ys = 0; i.e.,
the only form where the symmetry of the central difference is
not broken by an additional noise contribution in order to yield
the correct kinetic energy. The coefficients to the noise terms
in Eq. (35) are given by I'y = I's = v/b.

Case B: by; =1, y5s = —%. This velocity is given in
Ref. [26]:

n+% _ rn+l —_ 1 il
S Tha 3

and is the maximum amplitude rescaling y; of the standard
definition Eq. (20). It includes an explicit noise contribution
in order to achieve the correct kinetic energy statistics. The
velocity attenuation is here assigned exclusively to the second
half of the time step as seen from Eqs. (39)—(41). The coeffi-
cients to the noise terms in Eq. (35) are given by I'y = 2b and
I's =0.

Case C: y; =1, ys = —1[b— /b(T + b)]. This case de-
fines the velocity from the neutral amplitude rescaling y; = 1
of the standard definition Eq. (20), which is

| rn+l _n

el 1
2 r — 5= VB FBI L @)

T dr

While this expression has a nontrivial prefactor ys5 to the
compensating noise term, it may be attractive by the ab-
sence of amplitude scaling of the velocity Eq. (20). Thus,
the average velocity is here correctly representing a ballistic
(constant velocity) trajectory. The coefficients to the noise
terms in Eq. (35) are given by I'y = 2b*> — a/b(1 + b) and
I's = +/b(1 + b).

We re-emphasize that simply obtaining the correct kinetic
energy is not a sufficient criterion for a physically reasonable
definition of a kinetically sound velocity. As an extreme
limiting example, we highlight

Case D: y1 =0, y5 = :i:%, / l’%b. In this case,

o p L gt (45)
V20 mdt

This definition produces the correct kinetic energy but is
clearly not an appropriate definition of a meaningful veloc-
ity since it is void of any information about the associated
trajectory r". Instead, at each time step, a random value is
chosen from the Maxwell-Boltzmann Gaussian distribution
and simply assigned to the velocity variable.

Given that the velocity definitions of this paper are all built
on the GJF trajectory, we retain the configurational Einstein
diffusion result of Eq. (12) for any of the above choices of
velocities. The corresponding Green-Kubo calculations for
f = 0 using the derived two-point velocities can be found in
Appendix B. The results show that the discrete-time Riemann
sums allow for correct, and time-step-independent diffusion
results if the right-Riemann sum is chosen for Case A (as
also derived in Ref. [19]) and if the trapezoidal sum is chosen
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for Case B. A Green-Kubo expression for Case C also exists,
but it is not given by one of the three traditional discrete-time
Riemann sums.

We also note that the evaluation of a correct Green-Kubo
value for diffusion in a flat potential f = 0 is neither a guar-
antee for correct Green-Kubo results in systems where f # 0
nor is it necessarily a good indicator of the quality of kinetic
measures for curved potentials. For example, the GJF on-site
velocity, v" (5), produces the correct Green-Kubo result [see
Eq. (A4)], yet it also produces a depressed kinetic energy (15).
In general, it is the Einstein definition Eq. (12) that determines
the actual diffusion, since this expression is a configurational
measure for the actual square distance an object has been
displaced over a given time. The simple Green-Kubo results
shown in the Appendices are merely indicators of consistency
between kinetic and configurational properties of a freely
diffusing particle.

III. NUMERICAL SIMULATIONS

In order to validate the kinetic features obtained for the
velocities presented in this paper, we conduct the same kind of
molecular simulations that was used to validate Case A along
with showing detailed comparisons with the well-known
Briinger-Brooks-Karplus (BBK) [8] and Pastor-Brooks-Szabo
(PBS) [9] methods in Ref. [19]. The system consists of N =
864 atoms, each with mass m, in a cubic simulation cell with
volume V and periodic boundary conditions at a normalized
pressure of approximately 0.1. The interaction potential E,(r)
is a splined, short-range Lennard-Jones potential given by

E,(Ir)
Ey
()™ —2(k) ™,
=120l =rot+ 2Arl =),
0, re < rl

0<frl<ry

re < |r| < re (46)

r being a coordinate between a pair of particles. The spline
parameters are given by

r 13\ 1/
s _ (_> ~ 1.108683, (47)
ro 7
3 S 32E,(r,
Te _ I 32500 950704, 48)
ro ro E)(ro)r
8E(rs) + (re — 19)E (r5)
_ ) 49
a4 4(r. — ry)* “9)
4E,(rs) + (re — ro)E (1)
_ 50
ag 4(”c — "s)8 ( )

The potential E,(r) has minimum —E, at |r| =ry and is
smoothly splined between the inflection point of the Lennard-
Jones potential and zero, with continuity through the second
derivative at |r| = ry and continuity through the third deriva-
tive at |r| = r..

With these characteristic parameters, time is normal-
ized to the inverse of the characteristic frequency wy =

,/Eo/mrg. Two characteristically different temperatures are
tested: kgT = 0.3E,, which results in a stable face-centered-

—6.028 ¢ (a) k,T=0.3E, 11 (b) kyr=0.7E,
—4.028
—4.032
—4.034
0.008[ I
(c) kyT=0.3E, (d) ksT=0.7E, 10.018
> 0.006
S 0.016
N—
X 0. 004 [eoe—so—oo—so oo —sse ooo—os—et e
i 0.014
® 0.002
0.012

0 0.01 0.02 0.030 0.01 0.02
wodl wodt

FIG. 1. Statistical averages of potential energy (E,) [from
Eq. (52)] [(a) and (b)] and its standard deviation o, [from Eq. (53)]
[(c) and (d)] as a function of reduced time step wydt for o =
1 mawy. Panels (a) and (c) show results for a crystalline fcc state at
kgT = 0.3Ey; panels [(b) and (d)] show results for a liquid state at
kgT = 0.7E,. Horizontal dotted lines indicate the results for small
wodt = 0.001.

cubic (fcc) crystal at a volume of V = 617.2558}’8, and
kgT = 0.7E,, which results in a liquid state at volume V =
824.9801r5. We show results for three different friction co-
efficients: o = 1 mwy, @« = 10 mwy, and o = 100 mwy. No-
tice that while these values seem high at first glance, they
should be compared to the friction oy =m JE](ro)/m =~

\/@mwo relevant to the simulated density and characteristic
collision distances. From this comparison we conclude that
the simulated friction coefficients represent damping values
ranging from underdamped oscillatory to slightly overdamped
behavior.

For each simulated temperature, friction value, and time
step, we calculate statistical averages over one trajectory of
reduced time of woAt = 2x10° after the system has equili-
brated for at least the same time before statistics is acquired.
Data for all four velocities, the on-site GJF velocity (17) and
Cases A (42), B (43), and C (44), are accumulated such that
the displayed kinetic results for the different velocities on
Figs. 2, 4, and 6 can be directly compared. The correspond-
ing acquisition of the configurational statistics is shown on
Figs. 1, 3, and 5.

As expected from previous investigations
[15,19,24,25,27,28] of the GJF method, the configurational
statistics is excellent (see Figs. 1, 3, and 5). The displayed
quantities are derived from the potential energy E; of the
N-particle system,

N N
E, =ZZEP(|ri”—r;’

i=1 j>i

), (G
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kpT=0.3F b k,T=0.7F
0.3021 @ = o 11O ks s 10.702
o Case A
~ 0.801} v Case B 10.701
Eq/ A Case C 2
;\'2 0 300 O D B Feoe o O 700
< 0,299} 1 10.699
® on—site v
0.298} . 10.698
0.247F (c) kpT=0.3E, 10.576
20246 10.574
Nl o
V0245 o e y0.572
2 o
£ 0.244 10.570
0.243 10.568
0 0.01 0.02 0.030 0.01  0.02
wodt wodt

FIG. 2. Statistical averages of the kinetic temperature [from
Eq. (55)] [(a) and (b)] and their standard deviations [from Eq. (57)]
[(c) and (d)] as a function of reduced time step wodt for @ = 1 mawy.
Panels (a) and (c) show results for a crystalline fcc state at kT =
0.3Ey; panels (b) and (d) show results for a liquid state at kT =
0.7E,. Horizontal dotted lines indicate the exact, continuous time
results, (T;)* and a}‘k , given by Eqgs. (56) and (58). Results shown
for four velocity definitions: GJF on-site v and velocities of Cases A,
B, and C.

from which we calculate the average

(Ep) = (E}) (52)

and the temporal fluctuations o,

o = 15D~ (=) 3

It is apparent that the calculated quantities are, with very good
approximation, time step independent in the entire range of
stability, with a slight decreasing trend for increasing time
steps in the average of the potential energy and a slight in-
crease in its fluctuations. These deviations are most prominent
for low friction values but are minor on a relative scale. Since
linear analysis of the method shows that no configurational
sampling should deviate from expectations at any stable time
step [see Eq. (14)], it follows that the observed deviations are a
result of the nonlinearities in the interaction potential and not
a result of inherent systematic algorithmic inaccuracies [29].
Notice that the configurational behavior is independent of the
specific velocity one may associate with the GJF method.
Thus, the data shown in Figs. 1, 3, and 5 represent the use
of any velocity, including Cases A, B, and C.

The kinetic measures, which are the point of interest to this
presentation (see Figs. 2, 4, and 6), display excellent time
step independence, as one would expect from the analysis
above since these investigated velocities are engineered to

produce time step independence in their calculated kinetic
1

energy. Specifically, we investigate the kinetic energy E: *2

—6.028| (a) kzT=0.3E, (b) k5T=0.7E,
1—4.028
N —6.03071 ]
S
- B —4.030
/\\ —6.032
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FIG. 3. Statistical averages of potential energy (E,) [from
Eq. (52)] [(a) and (b)] and its standard deviation o, [from Eq. (53)]
[(c) and (d)] as a function of reduced time step wydt for o =
10mwy. Panels (a) and (c) show results for a crystalline fcc state
at kgT = 0.3Ey; panels (b) and (d) show results for a liquid state at
kgT = 0.7E,. Horizontal dotted lines indicate the results for small
wodt = 0.001.

1
and temperature T,:Hrz of the N-particle system at time ¢, e
bl 1 A ARG ntl
ET = EZm(u N = kT, (54)
i=1

for which the temporal averages

1 3N 1 3N
E) = (E7) = Th(f) = Zhs(T) - (59)
are expected to have the continuous time
3N 3N
(EQ)* = 7k3<Tk>* = TkBT- (56)

We also calculate the temporal fluctuations og, and o7, in

n+l n+i .
E. *and T, ?,respectively:

n+t n+i 3N
o = VIE) - B = Thon. 67)

where, in continuous time, these fluctuations are expected to
yield

o = %ng op = \/g ksT ~/N. (58)
The simulated quantities for the three highlighted cases of
velocities, Cases A, B, and C, are shown in Figs. 2, 4, and
6 as markers [Eqs. (54) and (57)] and dotted horizontal lines
[Egs. (55) and (58)] for reference. We also show the compara-
ble results when using the on-site GJF velocity v". The overall
impression of the simulation results for the kinetic measures
is that the two-point velocities behave largely in agreement
with the analytical expectations in the entire stability range of
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FIG. 4. Statistical averages of the kinetic temperature [from
Eq. (55)] [(a) and (b)] and their standard deviations [from Eq. (57)]
[(c) and (d)] as a function of reduced time step wydt for o = 10 mawy.
Panels (a) and (c) show results for a crystalline fcc state at kT =
0.3Ey; panels (b) and (d) show results for a liquid state at kzT =
0.7E,. Horizontal dotted lines indicate the exact, continuous time
results, (T;)* and o7, given by Egs. (56) and (58). Results shown
for four velocity definitions: GJF on-site v and velocities of Cases A,
B, and C.

the simulations. This is true for both simulated temperatures
and states of matter. It is noticeable that Cases A, B, and C
behave nearly identically, except for the high friction value,
where Case B (the maximally scaled velocity) deviates from
the two other definitions in the fluctuation measure. However,
we notice that this deviation is minor. It is here important to
emphasize that the kinetic results for the different velocity
definitions shown in Figs. 2, 4, and 6 are derived from the
same simulation. This explains why the fluctuations in, e.g.,
Fig. 2(d), are identical for Cases A, B, and C, since for
low friction the three definitions are nearly identical. This
also means that the deviations between the behavior of the
three two-point velocities seen in, e.g., Fig. 6(c) are a true
reflection of differences between the velocities. We have
further validated that reasonable choices of y; < 1 also pro-
duce reliable results. Specifically, the cases by; = /]a| [the
case for which velocity attenuation is equally partitioned
over the two half time steps—see Eqs. (39)—-(41)], and by, =
la| (the case for which velocity attenuation is exclusively
assigned to the first half of the time step) both yield re-
sults nearly indistinguishable from Cases A and C. We have
omitted the display of these results in the figures for visual
simplicity. The on-site GJF velocity is shown for comparison,
and it is clear that, in contrast to the velocities highlighted
in this paper, the deviation for the on-site velocity is much
more pronounced and, moreover, the error increases with the
integration time step.

—6.028¢ (a) ksT=0.3E, (b) kyT=0.7E,
—4.028
~ —6.030} 1
)
N—
= [T SRSE S PSPPI S SUF | PN ~4.030
< —6.032F 1
>y
5 ~4.032
—6.034 1 1
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0.008 T ' ' ' ' ] ' ' ! '
(c) ksT=0.3E, (d) kpT=0.7E, 10.078
~ 0.006] ]
5 0.016
N—
X 0.004+ R
i 0.014
© 0.002 1
0.012

0 0.01 0.02 0.030 0.01 0.02
wodl wodl
FIG. 5. Statistical averages of potential energy (E,) [from
Eq. (52)] [(a) and (b)] and its standard deviation o, [from Eq. (53)]
[(c) and (d)] as a function of reduced time step wydt for o =
100 mawy. Panels (a) and (c) show results for a crystalline fcc state
at kgT = 0.3Ey; panels (b) and (d) show results for a liquid state at

kgT = 0.7E,. Horizontal dotted lines indicate the results for small
wodt = 0.001.

IV. DISCUSSION

Inspired by the discovery of velocity definitions that can
produce accurate kinetic statistics in conjunction with the
GJF thermostat, we have here analyzed all possible finite-
difference velocity definitions that may accompany the GJF
trajectory. We draw two important conclusions: first, that
it is not possible to identify a meaningful on-site velocity
such that the kinetic measures of thermodynamics can be
time step independent and, second, that there exist an in-
finite number of two-point velocities such that the kinetic
energy is correctly evaluated. Having identified this family
of velocities, we have included them in the GJF formalism
and introduced the general LF GJF algorithm, which is the
leap-frog form of Egs. (35)—-(38). We have additionally written
the set of methods in a convenient and compact form of
Egs. (39)—(41), that includes any of the defined velocities
together with the native GJF on-site velocity such that the
method is entirely contained with operations pertaining only
to a single time step. The set of kinetically sound velocities
is parameterized by a single parameter (y;), and we have
highlighted three choices that seem either mathematically or
physically attractive within the physical limitations to values
of y1.

Molecular simulations of Lennard-Jones test cases have
confirmed the predicted features of the new set of velocities,
which seem to display very good time-step-independent be-
havior throughout the stability ranges for the time step. All
three highlighted velocity definitions (which are for y; > 1)
show near-identical statistical behavior, except for the most
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FIG. 6. Statistical averages of the kinetic temperature [from
Eq. (55)] [(a) and (b)] and their standard deviations [from Eq. (57)]
[(c) and (d)] as a function of reduced time step wydt for o =
100 may. Panels (a) and (c) show results for a crystalline fcc state
at kgT = 0.3Ey; panels (b) and (d) show results for a liquid state at
kgT = 0.7E,. Horizontal dotted lines indicate the exact, continuous
time results, (7;)* and o7, given by Eqs. (56) and (58). Results
shown for four velocity definitions: GJF- on-site v and velocities of
Cases A, B, and C.

amplitude-distorted velocity, which exhibits some minor
deviations in its fluctuations for large time steps. Additionally,
we have verified that also two other reasonable choices for
y1 < 1 exhibit results similar to the cases highlighted in the
figures.

It is our hope that the complete set of defined GJF ve-
locities will be further explored such that a more complete
understanding of the different definitions can be developed
and refined for a variety of applications. We have specifically
validated a select few of the possible velocity definitions, but
there may very well be other choices that are more appealing
in some instances. The cases of immediate interest are Cases
A and C. Case A is the true half-step velocity that is correctly
cross correlated with the spatial degree of freedom [28] but
does not give correct drift velocity. Case C gives correct
drift velocity but is not a half-step velocity, since it is not
symmetrically evaluated relative to the spatial coordinate r”".
These features suggest that Case A should be preferred for
equilibrium simulations with diffusive transport, while Case
C could be preferred for nonequilibrium simulations involving
drift or ballistic transport.

Our simulations demonstrated robustness of all highlighted
definitions in standard molecular dynamics systems. The
many possibilities must be explored by the community that
conduct Langevin dynamics simulations so that the breadth
of applications, limitations, and conditions can be adequately
tested.

APPENDIX A: GREEN-KUBO DIFFUSION USING
THE GJF ON-SITE VELOCITY v" FOR f =0

The Green-Kubo equivalent of the Einstein expression for
diffusion Eq. (12) is in discrete-time calculated from the
autocorrelation (v9™"v?), of the GJF velocity Eq. (5), where

b
vl =ah’ + — Za"_kﬁk
Mmoo

(Al)

Assuming that v? is a well-equilibrated velocity (|a|? — 0),
the velocity autocorrelation in discrete time reads

p [
<Zaq+n kﬂ Zaq -1 >

k=1

<vq+n

vy =

- kgT
K QL (A2)
m

The Green-Kubo diffusion coefficient, Dgk, is evaluated by
the continuous-time expression [30]

Dgx = / (vt +s)v(t)) ds (A3)

0

However, as pointed out in Ref. [19], this definition is some-
what ambiguous in discrete time since different Riemann
sums can be legitimately considered as approximations to the
integral in (A3) for dt > 0. The result for the trapezoidal sum

is
DGKZZUq+k :kBT ( +Za>

= —. (A4)

Thus, if the Green-Kubo integral is approximated by the
trapezoidal Riemann sum, then we obtain the correct diffusion
coefficient Dgk consistent with the correct configurational
value, Dg, given by Eq. (12). However, we could have used
other Riemann approximations that converge to the correct
results D for dt — 0 but do not exactly match it for dr > 0.
For example, the left-Riemann sum gives Dgx = Dg /b > Dg,
while the right-Riemann sum gives Dgk = Dg(a/b) < Dg.
Notice how sensitive the choice of the discrete approximation
to the integral is by comparing the right-Riemann sum, which
can yield even a nonsensical negative diffusion constant for
dt > dt, (i.e.,a < 0), to the trapezoidal approximation, which
in this case is both time step independent and correct.

APPENDIX B: GREEN-KUBO DIFFUSION USING
A TWO-POINT VELOCITY u"*? for f=0

For evaluating the Green-Kubo expression (A3) using the
derived two-point velocity, we will need the discrete-time
velocity autocorrelation function. For that purpose, we define
an initial condition at ¢ 1 which we insert into Eq. (35) for
f = 0. Iterating the equation g times yields

Wit = qlys + g9 1 /3q+l

/3+

q-2
+ <—+a—) prt. (B1)
k=0
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After lengthy, but trivial, calculations, we arrive at the com-
pact form for the velocity autocorrelation in the limit ¢ — oo
(i.e., after the memory of the initial velocity is lost)

kgT dt
(M+%+"uq+%> = 37[ " +a"_ll"4l"5(;—m(1 — 3,1,0)]. (B2)

This expression can be used to approximate the Green-Kubo
expression for diffusion by a Riemann sum. As was discussed
in Ref. [19] and Appendix A, we can justify any Riemann sum
of the Green-Kubo integral in Eq. (A3) with a discretization of
dt. The three obvious choices, left-Riemann Djr, trapezoidal
Dy, and right-Riemann D;g sums yield

1 adt
a+T4's— )|, (B3)
1—a 2m

kgT 1 1 adt
Dy, = dt| = + a+I4yJ's— )|, (B4
a 2m

kgT
DR = B—d[|:1 +
m

T m 212

kgT 1
Dgr = —dt
m 1—a

adt
<a + F4F5—), (BS)
2m

where Dig < Dy < Dir. When selecting y; and ys, an ad-
ditional consideration in determining if a velocity is mean-
ingful may be that the corresponding Green-Kubo diffusion

expressions can yield a result such that Dg € [D;r, Dir]. Not
all choices of y; yield a velocity variable satisfying this
criterion. Therefore, we define a parameter 0 < C < 1, which
can determine if a given velocity (as defined by y; and ys) can
produce Dg € [Dr, Dir], i.e., if there exists a C € [0, 1] for
the given method such that

kgT ksT
Dy = 2~ = Dg+C-2=ar. (B6)
o m

From Eq. (B3) the value of C for which Eq. (B6) is true is
given by
1 TI4ls
C=-—- , B7
2 2b ®7)
and the condition for a given velocity to have a Green-Kubo
diffusion value within the acceptable range is then

—b < Tul's < b. (B8)

It is straightforward to verify that the above-highlighted Cases
A, B, and C satisfy this criterion for any value 0 < b < 1.
Specifically, the optimally scaled velocity, uZH/ 2 (42), gives
the correct Einstein diffusion for D (as described in
Ref. [19]), and the maximally scaled velocity, u;’;’]/ 2 43),
gives the correct diffusion for Dy;.
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