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Entropic Elasticity of Two-Dimensional Self-Avoiding Percolation Systems
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The sol-gel transition is studied on a purely entropic two-dimensional model system consisting of hard
spheres (disks) in which a fraction p of neighbors are tethered by inextensible bonds. We use a new
method to measure directly the elastic properties of the system. We find that over a broad range of hard
sphere diameters a the rigidity threshold is insensitive to a and indistinguishable from the percolation
threshold pc. Close to pc, the shear modulus behaves as �p 2 pc�f , where the exponent f � 1.3 is
independent of a and is similar to the conductivity exponent in random resistor networks.

PACS numbers: 62.20.Dc, 05.10.–a, 61.43.– j, 64.60.Fr
In the gelation process, monomers or short polymers in a
fluid solution are randomly cross-linked. At a certain mo-
ment during the reaction, a macroscopically large network,
the gel, spans the system. At this point, the system changes
from a fluidlike (sol) to a solidlike (gel) phase which has a
finite shear modulus. Percolation [1] is frequently used to
describe the geometry of gels [2]. On a lattice, a percola-
tion problem is described by randomly occupying a frac-
tion p of the bonds or the sites. Usually, the gel point is
identified with the percolation threshold pc, above which
a spanning cluster is formed. Close to pc, the shear modu-
lus is expected to follow a power law: m � �p 2 pc�f . In
random resistor networks, near pc, the effective conductiv-
ity scales as �p 2 pc�t , where t depends only on the di-
mensionality of the system. De Gennes [3] used an analogy
between gel elasticity and conductivity of random resistor
networks and conjectured that f � t. While de Gennes’s
conjecture was supported by several experiments [4], other
experimental works measured very different values of the
exponent f [5]. Numerical studies of elasticity at vanishing
temperature T showed that the energetic elastic behavior
of percolation systems depends on the details of the inter-
action: For nonstressed central force networks the rigidity
threshold pr is larger than pc [6]. If bond bending forces
are present, then pc and pr coincide, but the exponent f
is considerably larger than t [7,8].

Near the sol-gel transition typical polymer clusters are
very large, tenuous, and floppy. Elastic properties of such
systems are primarily determined by the entropy, i.e.,
distortions of a sample barely modify its energy, but they
decrease the available phase space (decrease entropy) and,
thus, increase the free energy. Models of energetic elastic-
ity may, therefore, be less relevant for studying the critical
elastic behavior of gels. In this work we consider a purely
entropic system—a network of hard spheres, connected
by “tethers” [9], that have no energy but simply limit the
distance of a connected pair to be smaller than some value
b. No exact theory or direct numerical measurement are
presently available for the entropic elasticity problem with
excluded volume (EV) interactions. The entropic elastic
behavior of phantom networks (i.e., without EV) is, on the
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other hand, well understood. Phantom entropic networks
are often modeled as networks of Gaussian springs having
the energy E � 1

2Kr2, where r is the length of the spring.
The quantities that characterize the elastic behavior are the
stress tensor sij and the elastic constants Cijkl . They are
the coefficients of the expansion of the free energy density:
f��h�� � f��0�� 1 sijhij 1

1
2Cijklhijhkl 1 · · · , in hij ,

the components of the Lagrangian strain tensor [10]. In
Ref. [11] we proved that for phantom Gaussian networks
(PGNs) (i) the expansion of f��h�� includes only linear
terms in hij and, therefore, Cijkl � 0, and (ii) the stress
tensor is equal to the conductivity tensor of an equivalent
resistor network in which each spring with a force constant
K is replaced by a resistor of conductance K . Neither
result depends on the temperature or the topology of the
network. Close to pc, percolation networks “forget” the
details of the lattice and behave like isotropic systems,
and, therefore, the stress tensor sxx � syy � 2P,
where P is the pressure. Isotropic systems have only
three different nonvanishing elastic constants [12]:
C11 � Cxxxx � Cyyyy , C12 � Cxxyy � Cyyxx , and C44 �
1
2 �Cxyxy 1 Cxyyx� � · · · , which are related by C11 �
C12 1 2C44. Frequently, one finds it more useful to de-
scribe the elastic behavior in terms of the shear modulus
m � C44 2 P and the bulk modulus k � 1

2 �C11 1 C12�
[for two-dimensional (2D) systems]. For isotropic PGNs
we find that m � 2P � S, where S is the conductivity
of the equivalent resistor network [11]. Thus, f � t
within the PGN model. It is believed that phantom
networks which are not strongly stretched exhibit an
effective Gaussian behavior on sufficiently large scales,
independently of the detailed shape of the microscopic
potential. For linear polymers this is a consequence of
the central limit theorem, while for more complicated
systems this can be demonstrated numerically [9,13].
Thus, f � t is expected to be valid for most phantom
systems. Recently, this result was indeed demonstrated
by Plischke et al. in a numerical study of phantom central
force percolation networks at T fi 0 [14].

It has been suggested that EV interactions primarily in-
fluence the system by introducing osmotic pressure [15].
© 2000 The American Physical Society 2533
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Thus, the true problem may be approximated by a mix-
ture of PGN and “pressure producing fluid.” This reduces
the self-avoiding system to an energetic “scalar” elasticity
model [15,16], which is equivalent to the PGN, and leads
to the conclusion that f � t. On the other hand, a heuris-
tic approach to the problem [17] leads to the conclusion
that f is significantly larger than t. A semimicroscopic
theory of the somewhat related problem of vulcanization
transition [18] yields the exponent f � 3, predicted by the
classical theory [19]. (This is also the value of the con-
ductivity exponent in the upper critical dimension of the
percolation model.) One of the explanations for the large
range of experimental and theoretical values of f is the
difficulty to separate the energetic and entropic contribu-
tions to the shear modulus. In Ref. [14], for instance, the
authors used central force systems, for which at T � 0 en-
ergetic rigidity appears at p . pr . pc, and argued that
even at T fi 0 the energetic contribution to m, just above
pc, should be minor. A way to bypass the problem of
mixing of entropic elasticity with the energetic contribu-
tion is to measure the elastic moduli of purely entropic
systems. The system whose elastic properties are studied
in this paper, a network of hard spheres connected by teth-
ers [9], is a simple example of such a system. Recently,
we have devised a method very well suited for numerical
calculation of the stress tensor and the elastic constants
of such “hard-spheres-and-tethers” systems [20]. Within
the method, sij and Cijkl are measured directly from the
probability densities of contacts between spheres and the
probability densities of having stretched tethers.

The topology of the network was defined by considering
the bond percolation problem of a triangular lattice (pc �
p

9 � 0.349), with a fraction p of bonds present. Each
site of the lattice was replaced by a sphere of diameter
a, while each present bond was replaced by a tether of
maximal extension b, where the lattice spacing b0 � 1.
Once the (quenched) topology was defined, the system
was allowed to move in a continuous 2D space. Figure 1
depicts a part of a typical equilibrium configuration. In
our Monte Carlo (MC) simulations we used a 52 3 60 site
lattice (that has an aspect ratio very close to 1). Periodic
boundary conditions were applied in order to fix the area
of the systems. We generated the MC configurations using
a new updating scheme [21], in which the conventional
Metropolis single atom steps are replaced by collective
steps of chains of atoms. At each MC time unit we made
a number of move attempts (with acceptance probability
�0.5) equal to the number of atoms. We measured sij

and Cijkl over a broad range of concentrations p above
pc. As p approached pc, we needed to simulate more
quenches because of the increasingly broader distribution
of the values of m between the different samples. For the
system closest to pc we used 40 quenches, while for the
systems distant from pc, four quenches sufficed. Close to
pc, the relaxation time t becomes very large. To estimate
t, we used the expression t � 2kTL2r��p2ms2�, where
2534
FIG. 1. Equilibrium configuration of the system with a � 0.7,
b � 1.05, and p � 0.405. Only part of the system is shown.

L is the linear size of the system, s is the (average) distance
an atom moves in one MC time unit, r � 2��

p
3 b2

0� is the
number density of atoms, and k is the Boltzmann constant
[22]. The value of m in the expression for t was taken,
a posteriori, from the simulations. For each individual
quench, the total duration of the MC run was at least 30
times larger than t. The increase of the fluctuations in the
value of m and the larger relaxation times close to pc effect
the error estimates. The error bars appearing in the graphs
correspond to 1 standard deviation of the average.

Figure 2 depicts the pressure and the bulk and shear
modulus for a range of values of p for a � 0.7 and
b � 1.05. The pressure and the bulk modulus do not van-
ish at pc. The pressure decreases monotonically with p
due to the increasingly larger negative contribution of the
tethers to P. At p � 0.46, the contribution of the tethers
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FIG. 2. Pressure P (circles), shear modulus m (squares), and
bulk modulus k (triangles) as a function of the bonds concen-
tration p, for percolation networks with a � 0.7 and b � 1.05.
Results are in kT�b0 units. The vertical dotted line marks pc.
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to the pressure overcomes the positive contribution of the
hard spheres, and P becomes negative. The point of van-
ishing P depends on a and b. The bulk modulus does not
change significantly near pc, while at larger values of p it
increases rapidly. The shear modulus becomes extremely
small at pc, signaling the sol-gel transition. (The elastic
constants Cijkl do not vanish near pc.) In the presence
of EV interactions it is not self-evident that the transition
from liquid (sol) to solid (gel) behavior appears at pc. In
the absence of tethers (p � 0), the behavior of the system
depends on the diameter of the disks a, or rather the re-
duced density d � ra2, as indicated near the vertical axis
of Fig. 3. The maximal possible packing is d � 2�

p
3 �

1.15. At slightly smaller densities the system is a 2D
solid with quasi-long-range order. At d � 0.91 the solid
melts into a phase whose nature is controversial. Some
numerical works [23] suggest that it is an hexatic phase
with quasi-long-range orientational order, as predicted by
the Kosterlitz-Thouless-Halperin-Nelson-Young theory
[24]. Other works [25] favor a fluid-solid coexisting phase
(i.e., the usual first order transition), as proposed, for
instance, by Chui [26]. At d � 0.89, the system becomes
a homogeneous liquid. For the purpose of our work, it is
important to realize that close to d � 0.89, corresponding
to a � 0.88, finite size effects make it difficult to distin-
guish between the phases, and, therefore, the largest a
used in our simulations is a � 0.85, as indicated by the
full circle in Fig. 3. (The open circle in Fig. 3 indicates the
smaller density d � 0.57, corresponding to a � 0.7, used
in our simulations.) In the absence of EV interactions,
the onset of rigidity is obviously at pc. One might expect
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FIG. 3. The phase diagram of the system. The horizontal and
vertical axes represent the concentration of the tethers and the
reduced density of the spheres, respectively.
that the line separating the sol and the gel phases should
move towards lower p with increasing a. However,
within the accuracy of our simulations we were unable
to distinguish between the rigidity threshold pr and pc.
Thus, the sol and the gel are separated by essentially a
vertical line depicted in Fig. 3 at pc.

In Fig. 4 we depict our results for m as a function of
�p 2 pc� for the two values of a. As expected, larger EV
interactions correspond to larger values of shear modulus.
However, both graphs exhibit similar power laws with f �
1.3 6 0.1 for a � 0.7 and f � 1.3 6 0.2 for a � 0.85.
This value of f is close to the value of the conductivity ex-
ponent t � 1.310 6 0.001 in 2D [27], which is expected
for phantom networks (a � 0) whose elastic behavior is
Gaussian. We therefore conclude that f is independent of
a over the entire range a # 0.85. Note that our result is in-
consistent with an indirect estimate f � 2.7 6 0.1, which
was obtained by Del Gado et al. [28]. Their simulations
were performed on a discrete lattice, where the phase dia-
gram differs from the one in Fig. 3, and used slightly cor-
related bond topologies.

In this work we analyzed the elastic behavior of purely
entropic systems. The fact that the numerical value of the
exponent f found in our simulations is (within error bars)
equal to the exponent t of the conductivity lends credibil-
ity to qualitative theories which treat the system as if it
is a PGN with added pressure. However, we must note
that formal exact identity between the elasticity and con-
ductivity problems cannot exist in the same simple sense
as it exists between the true PGN problem and conduc-
tivity. While in 2D we can only suspect that pr may be
lower than pc in dense systems, in three dimensions topo-
logical entanglements reduce pr below pc [29]. (Unfortu-
nately, the decrease in pr due to topological entanglements
is very small and cannot be investigated in the context of
elasticity.) This and additional possible EV effects bring
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FIG. 4. Logarithmic plot of the shear modulus m as a function
of �p 2 pc�, for systems with a � 0.7 (circles) and a � 0.85
(squares). For both systems b � 1.05.
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pr strictly below pc, and, therefore, a simple mapping be-
tween the random resistor model and elasticity problem is
impossible (unless it is used in some generalized sense).
The fact that the exponent f is much smaller than the ex-
ponent predicted by the energetic bending elasticity model
implies that at finite T in the presence of bond bending
forces, sufficiently close to rigidity threshold, the elastic
behavior will be entropy dominated. The lack of impor-
tance of central force elasticity for systems of this kind was
already discussed in Ref. [14].
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