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ABSTRACT

Cool weakly ionized gaseous rotating disks are considered by many models to be the origin of the evolution of
protoplanetary clouds. Instabilities against perturbations in such disks play an important role in the theory of the
formation of stars and planets. Thus, a hierarchy of successive fragmentations into smaller and smaller pieces as a part
of the Kant-Laplace theory of formation of the planetary system remains valid also for contemporary cosmogony.
Traditionally, axisymmetric magnetohydrodynamic (MHD) and, recently, Hall-MHD instabilities have been thor-
oughly studied as providers of an efficient mechanism for radial transfer of angular momentum and of radial density
stratification. In the current work, the Hall instability against nonaxisymmetric perturbations in compressible rotating
fluid in external magnetic field is proposed as a viable mechanism for the azimuthal fragmentation of the proto-
planetary disk and, thus, perhaps initiates the road to planet formation. The Hall instability is excited due to the
combined effect of the radial stratification of the disk and the Hall electric field, and its growth rate is of the order of the
rotation period. This family of instabilities is introduced here for the first time in an astrophysical context.

Subject headinggs: instabilities — MHD — planetary systems: protoplanetary disks

1. INTRODUCTION

Linear mode analysis provides a useful tool for gaining impor-
tant insight into the relevant physical processes that determine
the stability of rotating fluid configurations. The importance of
magnetic fields in rotating disks has been demonstrated by the
rediscovery of the magnetorotational instability (MRI) in which
hydrodynamically stable flows with an angular velocity that is
decreasing outward are highly unstable when threaded by a weak
magnetic field (Balbus & Hawley 1991). That investigation has
been carried out in the magnetohydrodynamic (MHD) limit and
invoked a number of approximations appropriate to the study of
the evolution of long-wavelength perturbations in the weakmag-
netic field limit. The inclusion of the Hall electric field (Hall
MHD) is a relatively recent development (Wardle & Ng 1999;
Wardle 1999; Balbus & Terquem 2001; Sano & Stone 2002a,
2002b; Salmeron &Wardle 2003; Desch 2004; Urpin & Rudiger
2005; Rudiger & Kitchatinov 2005). The Hall electric field plays
an important role in the disk’s dynamics when the coupling be-
tween the electrons and heavy particles (ions and neutrals) of the
fluid is weak. In such cases, the inertial length of the ions is lon-
ger than the characteristic perturbation’s length scale, and con-
sequently, the motions of the ions and electrons are decoupled.
Indeed, it has been shown that the Hall electric field has a pro-
found effect on the structure and growth rate of unstable modes
like the MRIs. Furthermore, as will be shown below, the Hall
term gives rise to new branches of unstable modes. In particular,
it is shown that the Hall term, in the presence of radial stratifi-
cation, excites nonaxisymmetric instabilities.

As an astrophysical interest, we mention magnetically sup-
ported cool molecular clouds and their dynamics. In the disk of a
typical spiral galaxy, the magnetic field strength is usually esti-
mated to be of several to more than 10 �G, while in some regions
of spiral galaxies, the magnetic field strength may be higher than
several tens of microgauss (Sofue et al. 1986; Beck et al. 1996).

For a protoplanetary disk, the magnetic field can be significantly
higher. By these estimations and others, it is almost certain that
MHD density waves should also play an important role in the
dynamics and evolution of structures within a magnetized gas
disk (Fan & Lou 1996). As is well known in the classical nebular
hypothesis by Kant and Laplace, the condensation in a proto-
planetary rotating disk plays an important part in forming stars
and planets. That part of the Kant-Laplace theory remains valid
also for a contemporary cosmogony. The ‘‘standard’’ theory of
the multistage accretionary formation of planets, or the so-called
core accretion mechanism (Safronov 1972; Pollack et al. 1996),
remained the most popular until recently, when it was criticized
by Boss (2002, 2003) and others. The main problem of the latter
is the timescale, which is longer than estimates of the lifetime of
many planet-forming disks (Taylor 1962; Feigelson&Montmerle
1999). In any case, all theories rely on instabilities as a mecha-
nism to transform a relatively uniform rotating gaseous disk into
a planetary system. That is, at an early stage, the protosolar neb-
ulae are formed by fragments that separated from a molecular
cloud. Planetary formation is thought to start with inelastically
colliding gaseous and dust particles settling to the central plane
of the rotating nebula to form a thin layer around the plane. Dur-
ing the early evolution of the disk it is believed that the dust par-
ticles also coagulate into comets and planetesimals. On attaining
a certain critical thickness (and correspondingly low temperature)
small in comparison with the size of the disk, as a result of a local
gravitational collapse the nebula disintegrates into the central
body and a number of separate protoplanets. Instabilities arise as
the thickness of the disk is reduced (Gurevich & Chernin 1978;
Safronov 1972). If a rotating gaseous disk has a large vertical
thickness owing to a high internal temperature, then it is stabilized
against gravitational instabilities by thermal motion (Gurevich &
Chernin 1978). In Boss (2004) it is demonstrated that convective
cooling is able to cool the disk midplane at the desired rate to pro-
duce clumps inmarginally unstable disks. The physical phenomena
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treated in this paper occur during the stage of evolution of the
protoplanetary cloud when the dust and gas in the disk start to
condense into planetesimals and a star with current luminosity
emerges at the center of the nebula.

The rest of paper is organized as follows. In x 2.1 we present
basic equations and state our assumptions. In x 2.2we present the
dispersion relation to be solved. In x 2.3 we pay particular atten-
tion to the conditions for the existence of complex-conjugate
roots of the dispersion relation. We present our conclusions and
discussion in x 3.

2. HALL-MHD EQUATIONS
AND THE DISPERSION RELATION

2.1. Basic Equations

We consider a thin rotating gaseous disk with angular veloci-
ties �(r), where G is the gravitational constant,M is the mass of
the central body, and r is the distance from the center of the rotat-
ing disk. The thickness of the disk can be estimated by cs /�(r),
where cs is the sound speed. The disk is made of partially ionized
plasmawhere ions are well coupled to the neutrals while the elec-
trons are not. However, charge neutrality, ne ¼ ni, is assumed to
be valid. The disk is immersed in a magnetic field directed along
the rotation axis (defined as the z-axis in our frame of reference).
Following Braginskii (1965), the equations that govern the evo-
lution of the two fluid system, namely, the heavy particles (ions
and atoms) and the electrons, are the momentum equation,

�
dv

dt
¼ �:pþ 1

c
j < B� �

GM

r 3
r; ð1Þ

where � is the density of the heavy particles (ions and atoms),
and the generalized Ohm’s law,

me

due
dt

¼ eEþ e

c
v < B� 1

nec
j < Bþ Te

:ne

ne
� e j

�R

; ð2Þ

where Te is the electron temperature (measured in units of en-
ergy), �R is the electrical conductivity, and the relationship j ¼
ene(v� ue) has been employed. In addition, it has been assumed
in deriving equation (2) that the electrons are isothermal. The
generalized Ohm’s law as given in equation (2) differs from the
corresponding equation of MHD theory by the term on the left-
hand side, which describes the effect of electron inertia, by the
third term on the right-hand side, which is the Hall effect, by the
fourth term, which describes the effect of the electrons’ pressure,
and by the last term, which represents the drag force acting on the
electrons. In addition, it is convenient to write the induction
equation by substituting the electric field from equation (2) into
Faraday’s equation, which then becomes

@B

@t
¼ : < (v < B)�: <

j < B

ene

� �

� mec

e
: <

due
dt

þ: < (�: < B); ð3Þ

where � ¼ c2/4��R is the magnetic diffusivity. The relative
importance of the various terms in equation (3) may be inves-
tigated by considering appropriate length and timescales. Thus,
consider, for example, the second term on the right-hand side
of equation (3) (the Hall term). If we assume that 9 � 1/L, j �
cB/4�L (displacement current is neglected), and v � vA, where
vA ¼ B/(4��)1

=2 is the Alfvén velocity and L is a typical length
scale of the density inhomogeneity, then that term will be of the

same order as the convective electric field term if ‘i �
ffiffiffiffi
ye

p
L,

where

‘i ¼
c

!pi

¼
c

ffiffiffiffiffi
mi

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�e2ni

p ; ye ¼
�i
�
;

where ye is the ion mass density fraction and �i is the mass den-
sity of the ions. The ionization fraction xe ¼ ne /nn (here nn is the
number density of the neutrals) is equal to ye only if the ions and
the neutrals are of the same species. Otherwise, as indeed com-
monly happens, the ratio of ye to xe is approximately given by the
mass ratio of the dominant ions to that of the dominant neutrals.
Thus, the Hall term is important if the length scale L is of the
same order of magnitude or less than the ions’ inertial length ‘i
divided by

ffiffiffiffi
ye

p
, i.e.,

L � ‘i=
ffiffiffiffi
ye

p
: ð4Þ

Similarly, the ratio of the electron inertia term (the second to last
term on the right-hand side of eq. [3]) to the convective term is
given by

!

�e

c

4�eneL
� 1ffiffiffiffiffiffiffiffi

4��
p ;

where�e is the electron Larmor frequency and it is assumed that
the frequency! is high enough to estimate due /dt � !j/ene. Thus,
the electron’s inertial term is important for inhomogeneities which
are characterized by L � c/!pe ¼ ‘e. As far as the timescale is
concerned, it is seen from the relationship vA/‘i ¼

ffiffiffiffi
ye

p
�i (�i is

the ion Larmor frequency) that for the Hall term to be important
the frequency should be ! >

ffiffiffiffi
ye

p
�i , while the electron inertia

should be retained if ! > �e. Note that in the case of !3
ffiffiffiffi
ye

p
�i

the electrons drift in the wave’s electric field, while the ions are
immobile. Thus, if

ffiffiffiffi
ye

p
�iT!T�e, the second term on the

right-hand side of equation (3), namely, the Hall term, is the lead-
ing term. This is the reason to term such an approximation Hall
MHD and the waves in that regime Hall waves. It is seen from
equation (3) that in such a case

! � c2�i

!2
pi L

2
¼ vHd

L
;

where vHd ¼ v2A /ye�i L is the phase velocity of the Hall waves in
the presence of density gradients whose scale length is L. Such
waves exist merely due to electron drift in the electric field of the
Hall waves. It should be noted from the discussion above that the
conditions for the Hall term to be significant are more easily sat-
isfied as the fraction of ionization is decreasing. Finally, it should
be noted that for low enough densities the ohmic dissipation term
in equation (3) (the last termon the right-hand side) is negligible in
comparison with the Hall term (Balbus & Terquem 2001). Ad-
ditional support to that point of view is provided by Jin (1996),
who estimated the ratio of the rotation period to the ohmic dis-
sipation time to be of the order of 10�3k 2H 2. As will be seen in
the subsequent sections, the growth rates of the Hall instability
are of the order of the rotation period, and the relevant wave-
lengths satisfy kH < 1. Hence, the effect of ohmic dissipation
will be neglected from now on, bearing in mind that it may none-
theless lower the growth rates of the investigated instabilities.

2.2. The Linearized Equations and the Dispersion Relation

We consider a differentially rotating disk for which the steady
state is characterized by an angular velocity �(r), where r is the

HALL INSTABILITY OF ROTATING DISKS 1227



distance from the disk’s center, and r-dependent density �(r).
The disk is threaded by an axial magnetic fieldB ¼ B0(r) ẑ. As the
steady state is assumed to be axisymmetric, and in addition, the
steady state magnetic field is axial, the steady state Hall electric
field is zero. As a result, the basic state of the flow is described by
ideal MHD.

The equations governing the linear stability of the rotating
disk may be derived from equations (1)Y(3) and the continuity
equation by assuming that the perturbations of the steady rota-
tion are of the form

f (r; � ) ¼ f (r) exp ½i(m�� !t)�; ð5Þ

where f (r; � ) stands for the perturbation of any of the physical
variables that describe the system. It should be noted that, strictly
speaking, equation (5) can be used only for rigid rotation, as dif-
ferential rotation results in nonexponential perturbations. None-
theless, that fact accentuates the nondependence of the Hall
instability on the rotation shear, in contrast to MHD instabilities
like MRIs. A full description of the temporal evolution of pertur-
bations in a differentially rotating disk will be described in a forth-
coming publication. The amplitudes of the perturbed �-component
of the velocity and density and the z-component of the magnetic
field can be expressed in terms of the amplitude of the radial
component of the perturbed velocity. This results in an ordinary
differential equation for ur(r) that should be solved with appro-
priate boundary conditions, thus yielding an eigenvalue prob-
lem. However, for purposes of demonstration we first consider
the simplified case of local approximation by assuming that
(1/ur)(@ur /@r)Tm/r. This means that radial gradients of per-
turbations are much smaller than the azimuthal gradients. After
linearization, equations (1)Y(3) and the continuity equation as-
sume the form

i(!� m�)ur þ 2�u� ffi 0; ð6Þ

(!� m�)u� þ i
�2

2�
ur ¼

m

r
c2s

�

�
þ m

r
V 2
A

bz

B0

; ð7Þ

� 1

ye��i

m

r
9r

B2
0

8�

�

�
þ m

r
u� � !� m �þ ‘2i �i

Lr

� �� �
bz

B0

¼ 0;

ð8Þ

(!� m�)
�

�
� m

r
u� ¼ 0; ð9Þ

where � is the perturbation of the density, � is the epicyclic fre-
quency given by � ¼ (4�2 þ 2r� d�/dr)1=2, and ur, u�, and bz
are the perturbed radial and azimuthal components of the fluid
velocity and the axial component of the magnetic field, respec-
tively. It has also been tacitly assumed that ye is a constant pa-
rameter that characterizes the steady state as well as the perturbed
disk. This assumption greatly simplifies the calculations by avoid-
ing the ionization dynamics while preserving the main features of
the Hall instability. In order to see that, it is first noted that typical
ionization rates are much larger than typical rotation frequencies.
Hence, since the inverse growth rates of interest are of the order of
the rotation period, it is plausible to assume that the system is in
ionization equilibrium at each time during the perturbations. In
order to describe that, the model suggested for a wide range of
ionization processes,

ye ¼ c (T )��1=2;

where c (T ) / T 1=4 is given in terms of the recombination and
ionization rate coefficients (Fromang et al. 2002), is adopted.
The latter yields in the polytropic case

ye ¼ c� ��3ð Þ=4; ð10Þ

where � is the adiabatic index. Now, the variations of ye are of
importance only in the second term on the right-hand side of
equation (3) whose linearized form is given by equation (8).
Thus, :ne in equation (3) is given by :(�ye), which in turn is
given due to equation (10) by:� (1þ d ln ye /d ln �). As a result,
influence of the variations in the ionization fraction is manifested
in the modification of the relevant length scales in equation (8)
by the same factor, (1þ d ln ye /d ln �), which is of order 1. Ac-
cording to equation (10), the latter may range between 1/2 for the
isothermal case (� ¼ 1) through 2/3 for the adiabatic case (� ¼
5/3) and 3/4 for � ¼ 2. Furthermore, as will be seen in x 2.3, one
of the parameters that determines the stability properties of the
rotating disk is given by the ratio of two length scales. This re-
duces the influence of the variations of the ionization fraction on
the Hall instability and justifies the constant ye simplification.
The system of equations (6)Y(9) yields the dispersion relation

!̃3� !̃2!Hd� !̃ �2þ k 2 c2s þ V 2
A

� �� 	
þ !Hd �2 þ k 2 L

�

@P
@r

� �
¼ 0;

ð11Þ

whereP is the total unperturbed pressure, !̃ ¼ !� m�, k ¼ m/r,
and !Hd ¼ m‘2i �i /(Lr) is the Hall drift frequency. It is a direct
result of the assumed form of the perturbation, i.e., equation (5),
that the azimuthal and radial components of the perturbed mag-
netic field as well as the axial component of the perturbed ve-
locity are zero. In addition, the derivatives of the equilibrium
profiles have been neglected in deriving the linearized equations
above, except in the axial component of Faraday’s law (eq. [8]),
where due to the Hall term, they are of the same order as the rest
of the terms.

2.3. The Instability against Nonaxisymmetric Perturbations

In the case of homogeneous density andmagnetic field strength
(L ! 1), the two roots of equation (11) represent two stable
branches of density waves that originate due to both the rotation
of the disk and the external magnetic field. However, in the case
of density or magnetic field inhomogeneity the roots of equa-
tion (11) with real coefficients are real if and only if the following
conditions are satisfied:

D ¼ !6
Hd

108
27X 2 þ 4X 1� 9Y 2

� �
� 4Y 2 þ 8Y 4 � 4Y 6

� 	
� 0;

ð12Þ

where

X ¼ � k 2L9rP
�!2

Hd

þ
k 2 c2s þ V 2

A

� �
!2

Hd

;

Y 2 ¼ �2

!2
Hd

þ
k 2 c2s þ V 2

A

� �
!2

Hd

:
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If the last condition is not fulfilled, equation (11) has two complex-
conjugate roots, one of which signifies instability. The conditions
for that to happen are

X � 2

27
�1þ 9Y 2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9Y 2 þ 27Y 4 þ 27Y 6

p
 �
ð13Þ

or

X � 2

27
�1þ 9Y 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9Y 2 þ 27Y 4 þ 27Y 6

p
 �
: ð14Þ

Further insight into the onset of the Hall instability may be
gained by denoting the total pressure radial derivative by ( p þ
B2
0 /8�)/LP where LP is the inhomogeneity length of the total

pressure. Next, the well-known relation cs ¼ H� is recalled, and
finally normalizing frequencies to � and wavelengths to H, the
following dispersion relation is obtained:

!̃3 � q	!̃2 � !̃ �̂2 þ q2 1þ 
�2
� �� 	

þ q	 �̂2 þ �q2 1þ 
�2=2
� �� 	

¼ 0; ð15Þ

where

	 ¼ 1




‘i
L

ffiffiffiffi
ye

p ;


 ¼ cs /VA, q ¼ kH , �̂ ¼ �/�, and � ¼ L/LP . It is first noted that
for 	 ! 0 the MHD regime is recovered and the roots of equa-
tion (15) represent the stable combination of the fast magneto-
sonic waves and the epicyclic oscillations. However, as 	 is
increased (which means that L is decreased relative to the inertial
length of the ions) the system enters into the Hall-MHD regime.
In that case, elementary analysis of Cardano’s solution of cubic
equations reveals that the nature of the roots of dispersion equa-
tion (15) hinges on the value of �, which is given by

� ¼ �̂2 þ �q2 1þ 
�2=2ð Þ
�̂2 þ q2 1þ 
�2ð Þ ; ð16Þ

and the roots of the quadratic equation

4�S 2 þ 1þ 18�� 27�2
� �

S þ 4 ¼ 0; ð17Þ

where

S ¼ q2	 2

�̂2 þ q2 1þ 
�2ð Þ :

Thus, equation (15) has two complex roots, and hence, the
system is unstable in the following two cases:

1. � > 1, for S1 < S < S2, where S1 and S2 are the roots of
equation (17).

In this case � must be positive which means that the density
and the total pressure change radially in the same direction. It is
therefore obvious that regions of instability occur where the total
pressure changes more rapidly than the density (� > 1). This is
indeed the case in polytropic disks for which L/Lp ¼ � > 1,
where Lp is the inhomogeneity length associated with the pres-

sure. Hence, � > � and consequently � > 1, which means that
the disk is unstable under the Hall instability if 
 is such that S
is between the two roots of equation (17). Exact values of the
growth rate, obtained by the numerical solution of equation (15),
are depicted in Figure 1 for Keplerian rotation ( �̂ ¼ 1), with
‘i /(L

ffiffiffiffi
ye

p
)¼ 10 and � ¼ 5/3, for various values of 
. It is found

that the disk is unstable for 1 < 
 < 20.
2. � < 0, for S > max (S1; S2).
In this case it is obvious that the gradients of the density and

the total pressure must have opposite signs (i.e., � < 0). Such sit-
uations may occur when radial inflow plays an important role in
the dynamics of the evolving disk, such as in young protoplanetary
clouds (Hogerheijde 2004) or when radial rings of nonmonotonic
density profiles are formed due to gravitational instabilities (Mayer
et al. 2005). In these cases, in the limit	31 one of the solutions
of equation (15) is approximated by equating the second and
fourth terms in equation (15) and is given by

! ¼ �i�; ð18Þ

where

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�jq2 1þ 
�2=2ð Þ � �̂2

p
: ð19Þ

It is clear that in this case the rotation plays a stabilizing role. In
addition, since S / 1/
, there is an upper bound on 
 for insta-
bility to occur but not a lower bound. Furthermore, in the limit of
small 
 the growth rate grows without bound as 
 is decreased.
Numerical solutions of equation (15) for Keplerian rotation with
‘i /(L

ffiffiffiffi
ye

p
) ¼ 10 and � ¼ �1:5 are depicted in Figure 2. The in-

stability exists for 
 < 9, and the growth rate is indeed a growing
function of 1/
.

The Hall instability for slab geometry was discovered by
Brushlinskii &Morozov (1980) and has been investigated in de-
tail by Liverts & Mond (2004). In this geometry the steady state
plasma is accelerated due to gradients in the total pressure. Thus,
it is the combined effect of spatial density and magnetic field in-
homogeneities that drives the Hall instability in slab geometry.
As has been shown in Liverts & Mond (2004), the Hall insta-
bility results from the merging of the slow branch of the fast

Fig. 1.—Growth rates of the Hall instability for Keplerian rotation, with
‘i /(L

ffiffiffiffi
ye

p
) ¼ 10 and � ¼ 1:66.
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magnetosonic waves and the slow quasi-electrostatic mode that
exists only due to density inhomogeneity. Thus, the Hall insta-
bility provides a powerful mechanism for the azimuthal breaking
of radially stratified disks into small fragments of size comparable
to the disks’ thickness and on a timescale of the order of the rota-
tion period.

3. SUMMARY AND DISCUSSION

This paper examined the instability of weakly ionized, thin
disks threaded by an external magnetic field within the Hall-
MHD model. The vertical stratification as well as the azimuthal
variations of the disks’ properties were ignored, whereas radial
distribution was considered. In particular, in astrophysical con-
texts such weakly ionized gaseous nebulae are relevant to the
protoplanetary disks. The conditions in protoplanetary disks were
discussed in Safronov (1972) and Gurevich & Chernin (1978). At
a certain stage of its evolution, the star nebula is believed to have
a characteristic disk size up to the order of 30Y100 AU, and the
total mass of the disk is believed to be less than roughly 0.1 of the
mass of the central star. This yields an integrated column den-
sity of � � 3 ; 102 g cm�2. Assuming that the mean mass of
the particles is mp ¼ �mH , the number density is given by n ¼
�/ �mHH(r)½ � ’ 2 ; 1014 cm�3, where H(r) is the scale thick-
ness of the disk. To estimate the value of the factor� it should be
noted that within this system lighter elements such as hydrogen
and helium were driven out of the central regions by star wind
and radiation pressure during a highly active phase, leaving be-
hind heavier elements like Na, Al, and K and dust particles.
Thus, in the outer part of the star nebula, ice and volatile gases
were able to survive. As a result, the inner planets are formed of
minerals, while the outer planets are more gaseous or icy. Con-
cerning thickness estimation, one can use cs(r)/�(r), which yields
H(r) � 0:002 AU. It should be noted also that due to the very
low temperature of the protoplanetary disks the only sources of
ionization are nonthermal, e.g., cosmic rays, X-rays, and the decay
of radioactive elements. Following Sano & Stone (2002b), the
ionization fraction at the midplane of gaseous disk is estimated
as xe ¼ ne /nn � 10�12. So the disk material is a partially ionized
plasma where ions and charged small dust grains are well cou-
pled to the neutrals but electrons are not. Following this assump-
tion we can estimate that ‘i /

ffiffiffiffi
ye

p
is up to the order of 1 AU. It

should be noted that such big values are obtained mostly due to
the low fraction of ionization; however, one should keep in mind

that the existence of positively charged grain particles increases the
inertial length (see definition after eq. [3]) and, thus, enhances
the effect of the Hall term. In x 2 it has been demonstrated that the
Hall term is important if H(r) < L < ‘i /

ffiffiffiffi
ye

p
. Thus, due to the

very small values of the ionization fraction in protoplanetary
disks, the Hall-MHD model has to be employed when studying
the stability of structures with realistic radial density inhomo-
geneities. Indeed, radial stratification with a length scale L > H
may exist in the disk due to such mechanisms as axisymmetric
density waves that give rise to alternating high- and low-density
rings. On the other hand, L is bounded from below by H due to
thermal pressure (Gurevich&Chernin 1978). Hence, as has been
further shown in x 2, protoplanetary disks with such radial den-
sity distributions are susceptible to strong nonaxisymmetric in-
stabilities whose growth rates are of the order of the rotation
period of the disk. Such instabilities result in the breaking of the
density rings into fragments that may be identified as plane-
tesimals. Following a widely adopted standpoint, an accumula-
tion of planetesimals may lead to the next stage of evolution of
the protoplanetary disk, which is the coalescence of the plane-
tesimals into protoplanets. Such planetesimals may survive the
thermal pressure if their characteristic size, i.e., 1/k, is bigger
than the disk’s thickness H (Gurevich & Chernin 1978). On the
other hand, the linear analysis presented in x 2.2 is valid if
kL < 1. Combining this last condition and the condition from
equation (4) results in the following limitations on k:

kH < 1; kH <
ffiffiffiffi
ye

p �i

�

‘i
L
; ð20Þ

where the value of 
 has been taken as 1 for simplicity. Thus, for
typical values in protoplanetary disks, namely, ye ¼ 10�12,�i ¼
104B0 /G s�1, and� � 1:9 ; 10�7 s�1, the right-hand side of the
second inequality in equation (20) is of the order of or smaller
than unity. It is therefore again the small ionization fraction that
enables the onset of the Hall instability in the small magnetic
field limit and by thus providing a mechanism for the initiation
of the standard scenario of planet formation.
Searching for other possible nonaxisymmetric mechanisms

that may compete with the Hall instability naturally leads to the
magnetorotational instability (MRI) whose growth rate, as that
of the Hall instability, is of the order of the inverse rotation time.
Obviously, the Hall effect on the MRI has to be taken into ac-
count in the context of weakly ionized disks and in order to carry
out the appropriate comparison. Doing so, it has been found
(Wardle 1999; Balbus & Terquem 2001; Rudiger & Shalybkov
2004) that MHD unstable MRI modes are stabilized or further
destabilized according to whether6 = B is positive or negative,
respectively. This is due to the fact that the MRI originates from
the interaction of the Alfvèn waves and the inertial (Coriolis)
modes. This is in contrast to the Hall instability, which represents
two other branches of the appropriate dispersion relation, namely,
the merging of the slow branch of the fast magnetosonic waves
and the slow quasi-electrostatic mode that exists only due to
density inhomogeneity, as was pointed out in x 2.3. Hence, the
Hall instability exists regardless of the mutual orientation of the
magnetic field and the rotation. Furthermore, the Hall instability
is insensitive to the rotation shear, but rather depends on the den-
sity stratification (radial in the case of the current work). In any
case, the comparison between the Hall instability and the Hall
modified MRIs cannot be complete, as only analysis of the latter
for axial wavenumbers is available in the literature for Keplerian
rotation. Some trends, however, may be seen from an equivalent
study for Couette flow that indicates that theMRIs are stable in the

Fig. 2.—Same as Fig. 1, but for � ¼ �1:5.

LIVERTS, MOND, & CHERNIN1230 Vol. 666



high-m limit which is just the opposite of the result presented
here. Thus, it seems that the Hall instability is currently the only
known mechanism to provide a route for the growth of highly
nonaxisymmetric perturbations.
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