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Abstract. The monotonicity and stability of difference schemes for, in general, hyperbolic
systems of conservation laws with source terms are studied. The basic approach is to investigate the
stability and monotonicity of a non-linear scheme in terms of its corresponding scheme in variations.
Such an approach leads to application of the stability theory for linear equation systems to establish
stability of the corresponding non-linear scheme.

In this first paper, we focus on the theoretical background. The main methodological innovation
is the theorems establishing the notion that a non-linear scheme is stable (and monotone) if the
corresponding scheme in variations is stable (and, respectively, monotone). Criteria are developed
for monotonicity and stability of difference schemes associated with the numerical analysis of systems
of partial differential equations. The theorem of Friedrichs (1954) is generalized to be applicable to
variational schemes. High-order interpolation and employment of monotone piecewise cubics in
construction of monotone central schemes are considered.
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1. Introduction. We are mainly concerned with the stability and monotonic-
ity [4] of difference schemes for hyperbolic systems of conservation laws with source
terms. Such systems are used to describe many physical problems of great practical
importance in magneto-hydrodynamics, kinetic theory of rarefied gases, linear and
nonlinear waves, viscoelasticity, hydrodynamical models for semiconductors, multi-
phase flows and phase transitions, radiation hydrodynamics, relaxing gas flows with
thermal and chemical non-equilibrium, shallow waters, traffic flows, etc. (see, e.g.,
[2], [6], [12], [19], [24], [25], [26], [28], [32], [36], [37] and references therein). We will
consider a 1-D system of the conservation laws written in the following form

∂u
∂t

+
∂

∂x
f (u) =

1
τ
q (u) , x ∈ R, 0 < t ≤ Tmax; u (x, t)|t=0 = u0 (x) , (1.1)

where u = {u1, u2, . . . , uM}T is a vector-valued function from R × [0,+∞) into an
open subset Ωu ⊂ RM , f (u) = {f1 (u) , f2 (u) , . . . , fM (u)}T is a smooth function
(flux-function) from Ωu into RM , q (u) = {q1 (u) , q2 (u) , . . . , qM (u)}T denotes the
source term, τ > 0 denotes the stiffness parameter, u0 (x) is either of compact support
or periodic. We will assume that the system (1.1) is hyperbolic and, hence, the
Jacobian matrix of f (u) possesses M linearly independent eigenvectors (see, e.g., [12]).
Here and in what follows ‖M‖p denotes the matrix norm of a matrix M induced by

the vector norm ‖v‖p = (
∑

i |vi|p)1/p, and ‖M‖ denotes the matrix norm induced by
a prescribed vector norm. R and C denote the fields of real and complex numbers,
respectively, and K denotes either of these fields.

In the numerical solution of the, in general, stiff (τ ¿ 1) system (1.1), one is seek-
ing to establish a numerical scheme that would be robust enough to eradicate spurious
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oscillations, i.e. a monotone scheme [4]. At the present time there are several notions
of scheme monotonicity. The notion of ‘monotonicity preserving scheme’ originally ap-
peared in Godunov [13]. Such a scheme transforms a monotone increasing (or decreas-
ing) function v (x) of space coordinate x at a time level t into a monotone increasing
(or decreasing, respectively) function v̂ (x) at the next time level t + ∆t. Nowadays
monotonicity preserving schemes are also known as, e.g., monotonicity conserving
iterations (or methods) [18], monotone schemes (e.g., [1], [22], [30]), monotonicity
preserving methods [26], and Godunov-monotone schemes [4]. Harten et al. [14] put
forward their own definition of scheme monotonicity as follows: a difference scheme

v̂i = H (vi−k, vi−k+1, . . . , vi+k) (1.2)

is said to be monotone if H is a monotone increasing function of each of its arguments.
The following definition is due to Samarskiy: a scheme is regarded as monotone if the
boundary maximum principle is maintained [41] (see also, e.g., [42, p. 183], [4], [3]). A
difference scheme may also be referred to as monotone if a maximum principle, e.g., the
boundary maximum principle, the region maximum principle, the maximum principle
for inverse column entries, the maximum principle for the absolute values, etc’, holds
for this scheme [5]. A further important notion of difference scheme monotonicity
was, in fact, done in [35] (see also [4]). A scheme will be referred to as monotone if it
is monotonicity preserving [13] and transforms a “∧-function” (or “∨-function”) into
a “µ - function” (or into an “η - function”, respectively). Here and in what follows, a
scalar grid function vi will be referred to as ∧-function (or ∨-function) if there exist
grid nodes m and n such that m ≤ n; vm > vm−1 and vi ≥ vi−1 (vm < vm−1 and
vi ≤ vi−1 for the ∨-function) if i < m; vi = const if m ≤ i ≤ n; vn > vn+1 and
vi ≥ vi+1 (vn < vn+1 and vi ≤ vi+1 for the ∨-function) if i > n. Simply stated, the
∧-function (or ∨-function) is a scalar grid function vi that has only one generalized
local maximum [35] (or generalized local minimum [35], respectively) The set of µ-
functions (or η-functions) is the union of ∧-functions (∨-functions, respectively) and
the set of monotone functions.

Hereinafter, for the sake of convenience, a monotonicity preserving scheme will be
referred to as Godunov-monotone (or G-monotone for short), a scheme monotone in
terms of Harten et al. [14] will be referred to as H-monotone, a scheme will be referred
to as Samarskiy-monotone (or S-monotone for short) if a maximum principle holds for
this scheme (see, e.g., [41], [42, p. 183], [4], [5]), and a scheme being monotone from
the standpoint of Ostapenko [35] will be referred to as Godunov-Ostapenko-monotone
(or GO-monotone for short) [4].

Notice, aiming to construct non-oscillatory numerical schemes for the equations
of hydrodynamics, heat transfer problems, etc., Godunov [13] points out that these
schemes must possess such an important property of the differential equations as
monotonicity preservation. Thus, with the use of a G-monotone scheme, any dis-
continuity in the initial monotone data can be smeared in succeeding time steps but
cannot become oscillatory. Godunov [13, p. 275] has proven that linear schemes with
constant coefficients in the form

v̂i =
k∑

n=−k

anvi+n (1.3)

will be G-monotone iff (i.e. if and only if) all of the scheme coefficients an ≥ 0.
Let us recall that a linear scheme is referred to as having constant coefficients if the
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scheme coefficients are the same in all equations of the scheme, e.g. an in (1.3) does
not depend on i. A linear scheme with variable coefficients can be written in the form

v̂i =
∑

j

aj
ivj . (1.4)

Schemes with variable coefficients are not uncommon in practice. For instance, such
a scheme arises if we solve (1.1) on a non-uniform grid. It is easy to see [4] that if a
constant will be a solution to (1.4), then the set of equalities

∑

j

aj
i = 1, ∀ i (1.5)

is the necessary condition for G-monotonicity of (1.4).
For studying G-monotonicity of non-linear schemes the notion of total variation

(TV, see, e.g., [12], [24], [26]) turns out to be an useful tool. We recall the following
definition just for the sake of completeness. Scheme (1.2) is said to be total variation
diminishing (TVD) if

TV (v̂) ≤ TV (v), TV (v) ≡
∑

j

|vj+1 − vj | . (1.6)

TVD schemes are attractive for at least the following reasons: (i) The notion of a
TVD method is sufficient to prove convergence [26, p. 148]; (ii) H-monotone schemes
are TVD [15], and any TVD scheme is G-monotone [12, p. 168], [15], [26, p. 110]; (iii)
There exist simple sufficient conditions for a scalar scheme to be TVD [12, p. 169].
Besides, it is widely believed that TVD methods are free from spurious oscillations
(e.g., [7], [15], [20], [26], [27], [33]); and thus, for the above-stated reasons, TVD
schemes are in common practice (see, e.g., [12], [24], [25], [26], [30], [31], [32], [36],
[37], [38], [44] and references therein).

It should be mentioned the long-known fact that TVD schemes can produce spu-
rious oscillations [17]. It is pointed out in [17] that these oscillations are small in the
scalar case, and the notion of essentially non-oscillatory (ENO) schemes is introduced.
ENO schemes, [17], allow for the production of spurious oscillations on the level of the
truncation error, but do not have a Gibbs-like phenomenon at jump-discontinuities,
and hence do not involve the generation of spurious oscillations proportional to the
size of the jump. Nowadays, a TVD scheme is said to have ENO-type oscillations if
their amplitude decreases as the grid is refined [38]. It should be mentioned here that
every convergent scheme has such a property, because the numerical solution should
converge to the true solution of the differential equation as the grid is refined.

Notice, Harten’s theorem relative to G-monotonicity of TVD schemes was proven
in [15] for a specific class of schemes approximating a 1-D scalar partial differen-
tial equation (PDE), and hence it does not always happen that a TVD scheme is
G-monotone. Actually, let us consider the following linear scheme with variable coef-
ficients:

v̂i = αivi−1 + βivi + γivi+1, (1.7)

where αi = βi = γi = 1/3 at i = −1, ±2, ±3,. . ., and α0 = β0 = ε, γ0 = α1 = 1− 2ε,
β1 = γ1 = ε (0 < ε < 0.25). Since αi, βi, γi > 0 ∀i, the scheme (1.7) is H-monotone
and, hence, TVD [15]. Considering the monotone increasing function vi, namely
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vi = 0 for all i ≤ 0 and vi = 1 for all i > 0, we obtain that v̂i = 0 for all i < 0,
v̂0 = 1−2ε, v̂1 = 2ε, and v̂i = 1 for all i > 1. We note that the grid function v̂i will not
be monotone. Hence, a TVD scheme can produce not only small spurious oscillations
(cf. [17]). It is demonstrated in [4] that a scalar TVD scheme, be it non-linear or
even linear with constant coefficients, can produce spurious oscillations comparable
with the size of the jump-discontinuity.

For studying the stability of non-linear schemes the notion of TV turns out to be
an effective tool. Actually, the following property

‖N (v + δv)−N (v)‖ ≤ (1 + α∆t) ‖δv‖ (1.8)

is sufficient for stability of a two-step method [26], however it is, in general, difficult
to obtain. Here ∆t denotes the time increment, α is a constant independent of ∆t
as ∆t → 0, v and δv are any two grid functions (δv will often be referred to as the
variation of the grid function v), N denotes the scheme operator. At the same time,
the stability of linearized version of the non-linear scheme is generally not sufficient
to prove convergence [16], [26]. Instead, the TV-stability adopted in [16] makes it
possible to prove convergence of non-linear scalar schemes with ease. However, the
TVD property is a purely scalar notion that cannot, in general, be extended for
non-linear systems of equations, as the true solution itself is usually not TVD [12],
[26]. Because of it, as noted in [26], in general, no numerical method for non-linear
systems of equations has been proven to be stable. There is not even a proof that the
first-order Godunov method converges on general systems of non-linear conservation
laws [26, p. 340]. Thus, a different approach to testing scheme stability must be
adopted to prove convergence of non-linear schemes for systems of PDEs. The notion
of variational scheme (or scheme in variations), see [4] and [5], has, in all likelihood,
much potential to be an effective tool for studying stability of nonlinear schemes
approximating systems of PDEs. An analogous approach suggested by Lyapunov
(1892) (see, e.g., [8]), namely to investigate stability by the first approximation, has
long been exploited for investigation of the stability of motion (e.g. [8], [10]) as well
as the stability of difference equations [11]. For completeness sake we establish the
notion that the stability of a variational scheme implies the stability of its original
scheme (see Section 2.1, Theorem 2.2 and Remark 2.3).

An approach to investigate non-linear difference schemes for S-monotonicity in
terms of corresponding variational schemes was suggested in [4], [5]. The advantage
of such an approach is that the variational scheme will always be linear (although it
may be emanating from a nonlinear operator) and, hence, enables the investigation
of the monotonicity for nonlinear operators using linear patterns. It is proven for the
case of explicit schemes that the S-monotonicity of a variational scheme will guarantee
that its original scheme also will be S-monotone [4]. Analogous theorem for the case
of implicit schemes can be found in Section 2.1, Theorem 2.1.

By way of illustration, let us consider the variational scheme corresponding to the
non-linear scheme (1.2):

δv̂i =
k∑

n=−k

an
i δvi+n; an

i ≡
∂

∂vi+n
H(vi−k, vi−k+1, . . . , vi+k), −k ≤ n ≤ k. (1.9)

The necessary and sufficient conditions for the scheme (1.9) to be S-monotone are the
4



following (see Corollary 2.15 in [5])

k∑

n=−k

|an
i | ≤ 1, ∀i. (1.10)

Hence, (1.10) is sufficient for the scheme (1.2) to be S-monotone [4, p. 1575]. Let a
constant (δv̂ = δv = const) will be a solution to the scheme in variations, (1.9). Then
we obtain from (1.9) that the coefficients of the variational scheme fulfill (1.5). In
such a case, if (1.9) is S-monotone, then an

i ≥ 0 [4, p. 1575]. Thus, H-monotonicity
of (1.2) will be the necessary condition for S-monotonicity of its variational scheme.

Since a variational scheme carries such an important properties of its original
scheme as S-monotonicity and GO-monotonicity ([4], see also Section 2.1, Theorem
2.1), the following definition will be useful in the investigation on scheme monotonicity.

Definition 1.1. A numerical scheme is termed variationally monotone if its
variational scheme is monotone.

Inasmuch as there are several notions of monotonicity for a numerical scheme, it
is evident that there must be several notions of variational monotonicity.

Let us note that the notion of S-monotonicity for an explicit scheme coincides
with the notion of scheme operator contractivity [26, p. 144], i.e. the scheme will
be S-monotone if (1.8) is valid under α = 0. Hence, S-monotonicity of a numerical
scheme implies the stability of the scheme.

It is demonstrated in [4] that S-monotonicity implies TVD property of a scalar
3-point scheme, however the scheme can be oscillatory. Furthermore, a conservative
scalar scheme consistent with a transport equation, H-monotone (hence TVD [15] and
consistent with the entropy condition [14]), S-monotone, and G-monotone can never-
theless produce spurious oscillations [4]. Thus, a different approach to monotonicity
must be adopted. As it was demonstrated in [4], the notion of GO-monotonicity
is a very helpful tool for the construction of non-oscillatory schemes. However, a
GO-monotone scheme can be not TVD [4]. Thus, if a numerical scheme will be GO-
monotone as well as S-monotone (GOS-monotone for short), then this scheme will be
stable and, in general, free of spurious oscillations [4].

2. Monotonicity and stability of difference schemes.

2.1. Non-linear schemes. We consider a nonlinear implicit scheme

Hi (y1, . . . ,yM ) = xi, i ∈ ω ≡ {1, 2, . . . , M} , (2.1)

where yi ∈ L ≡ KN denotes the sought-after vector-valued function of grid nodes,
xi ∈ L ≡ KN denotes the prescribed vector-valued function of grid nodes, Hi =
{Hi,1, . . . , Hi,N}T is a vector-valued function with the range belonging to KN . If we
introduce the additional notation y =

{
yT

1 , . . . ,yT
M

}T , x =
{
xT

1 , . . . ,xT
M

}T , H ={
HT

1 , . . . ,HT
M

}T , then the scheme (2.1) can be represented in the form

H (y) = x, x ∈LM , y ∈LM . (2.2)

Theorem 2.1. Let a nonlinear implicit scheme (2.1) be written in the form
(2.2), where x ∈Ωx ⊂ LM , Ωx denotes a closed and bounded convex set. Let the
mapping H in (2.2) have a strong Fréchet derivative (strong F-derivative [34, item
3.2.9]), H′ (y), at every y ∈ int (Ωy) provided that H (Ωy) = Ωx, and let H′ (y)
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be nonsingular. Then, for any x, x+δx ∈ Ωx the scheme will be S-monotone if its
variational difference scheme is S-monotone.

Proof. The scheme (2.2) can be seen, [5, p. 1126], as a two-node implicit scheme,
and its variational scheme becomes

δx = H′ (y) · δy, H′ (y) ≡ ∂H (y)
∂y

. (2.3)

As H′ (y) is nonsingular, we may rewrite (2.3) in the form

δy = (H′)−1 (y) · δx. (2.4)

Then, by (2.4)

‖δy‖=
∥∥∥(H′)−1 (y) · δx

∥∥∥ ≤
∥∥∥(H′)−1 (y)

∥∥∥ ‖δx‖ . (2.5)

Let (2.3) be S-monotone, i.e. let

‖δy‖ ≤ ‖δx‖ . (2.6)

In view of (2.5) and (2.6) we obtain [5, p. 1126] that
∥∥∥(H′)−1 (y)

∥∥∥ ≤ 1, ∀y ∈Ωy ⊆ LM . (2.7)

In view of the inverse function theorem [34, item 5.2.1] we obtain from (2.2) that

y = H−1 (x) , x ∈Ωx ⊂ LM , y ∈Ωy ⊆ LM . (2.8)

By virtue of the mean-value theorem [34, item 3.2.3] we obtain from (2.8)

‖dy‖ =
∥∥H−1 (x + dx)−H−1 (x)

∥∥ ≤ sup
0≤t≤1

∥∥∥
(
H−1

)′
(x + tdx)

∥∥∥ ‖dx‖

≤ sup
y∈Ωy

∥∥∥
(
H−1

)′
(H (y))

∥∥∥ ‖dx‖ . (2.9)

In view of the inverse function theorem [34, item 5.2.1] we can write

(
H−1

)′
(H (y)) = (H′)−1 (y) . (2.10)

By virtue of (2.10) and (2.7) we obtain from (2.9) that

‖dy‖ ≤ ‖dx‖ . (2.11)

The inequality (2.11) manifests the prove of the theorem.
Theorem 2.2. Let a non-linear explicit scheme be written in the form

v̂ = H(v), v̂ ∈ L, v ∈ Ω ⊂ L, (2.12)

where Ω denotes a closed and bounded convex set in a linear vector space L. Then for
any v,v + δv ∈ Ω the scheme will be stable if its variational scheme is stable.
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Proof. The variational scheme corresponding to the scheme (2.12) reads

δv̂ = H′(v) · δv, H′(v) ≡ ∂H(v)
∂v

. (2.13)

The linear scheme (2.13) will be stable [26, p. 145] if ‖H′(v)‖ ≤ 1+α∆t for all v ∈ Ω,
that is

sup
v∈Ω

‖H′(v)‖ ≤ 1 + α∆t. (2.14)

By virtue of the mean-value theorem [34, item 3.2.3] we obtain from (2.12)

‖H(v + δv)−H(v)‖ ≤ sup
0≤ζ≤1

‖H′(v + ζδv)‖ ‖δv‖ ≤ sup
v∈Ω

‖H′(v)‖ ‖δv‖. (2.15)

In view of (2.14) we conclude from (2.15) that the inequality (1.8) for (2.12) will be
fulfilled, and hence the original non-linear scheme (2.12) will be stable.

Remark 2.3. Theorem 2.2 can be reformulated for implicit schemes with ease.
The proof of this theorem for implicit schemes is identical to the proof of Theorem
2.1.

2.2. Linear schemes. Let v ≡{
. . . ,vT

i , . . .
}T (or A = {Aij}) be a partitioned

[29] vector (or a matrix, respectively), then we shall denote by 〈v〉 the ordinary vector
obtained from v (or by 〈A〉 the ordinary matrix obtained from A, respectively) by
removing its partitions. It is easy to see that

‖v‖∞ ≡ max
i
‖vi‖∞ = ‖〈v〉‖∞ . (2.16)

To start with, we obtain necessary conditions for some class of linear schemes to
be GOS-monotone. We consider the following explicit homogeneous scheme

zi =
∑

j

Bij · yj , zi,yj ∈ L, (2.17)

where L denotes the linear vector space with the orthonormal basis {bl}M
1 , b1 =

{1, 0, . . . , 0}T , b2 = {0, 1, . . . , 0}T , ..., bM = {0, 0, . . . , 1}T ; Bij ≡
{
Bkl

ij

}
is a square

matrix. It is assumed that any constant (i.e., zi = yj ≡ c = const) is a solution to
(2.17). Then, in view of (2.17), we find that

∑

j

Bij = I, ∀i (2.18)

will be the necessary condition for (2.17) to be G-monotone (cf. [4, p. 1560]). Here
and in what follows, I denotes the identity operator.

Theorem 2.4. Let an explicit linear scheme be written in the form (2.17), and
let any constant be a solution to (2.17). If (2.17) is GOS-monotone, then the diagonal
elements, Bkk

ij , of the matrices Bij ≡
{
Bkl

ij

}
are non-negative, i.e.

Bkk
ij ≥ 0, ∀i, j, k, (2.19)

and

Bkk
ij is a µ− function of i for all j and k. (2.20)
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Proof. We consider (2.17) when yj = yjbl, l = 1, 2, ...,M , where yj is a scalar
value. Let

{
zl
1,i, z

l
2,i, . . . , z

l
M,i

}T be the left-hand side of (2.17) under yj = yjbl. Then
we obtain from (2.17) the following system of decoupled scalar equalities

zl
k,i =

∑

j

Bkl
ij yj , k, l = 1, 2, . . . , M. (2.21)

In view of Corollary 3.14 in [4], the scheme (2.21) will be S-monotone iff
∑

j

∣∣Bkl
ij

∣∣ ≤ 1, ∀i, k, l. (2.22)

In view of (2.18) we have
∑

j

Bkk
ij = 1, ∀i, k, (2.23)

and hence
∑

j

∣∣Bkk
ij

∣∣ ≥ 1, ∀i, k. (2.24)

By virtue of (2.24) and using (2.22) under k = l we obtain that
∑

j

∣∣Bkk
ij

∣∣ = 1, ∀i, k. (2.25)

Thus, (2.23) and (2.25) must be valid simultaneously. It is possible iff all coefficients
Bkk

ij comply with (2.19).
To prove (2.20) we consider (2.21) under k = l. Let m be the scheme matrix

column number and δmj denote the Kronecker delta. Assuming that the scheme will
be GO-monotone, it will transform yj = δmj into a µ-function as δmj is a ∧-function
of j. Then we obtain from (2.21), under k = l, that zk

k,i = Bkk
im. Hence, Bkk

im is a
µ-function of i, ∀k,m.

Consider the special case of the scheme (2.17), namely, Bij in (2.17) depends on
a square matrix Ai

Bij = ϕij (Ai) , ∀i, j, (2.26)

where Ai is similar [29, p. 119] to a diagonal matrix Λi, i.e. there exists a non-singular
matrix Si such that

S−1
i ·Ai · Si = Λi≡diag

{
λ1

i , λ
2
i , . . . , λ

M
i

}
. (2.27)

It is assumed that Bij = 0 if j /∈ Ji ≡ {j : i− kL ≤ j ≤ i + kR}, where kL, kR =
const ≥ 0. Notice, it is not assumed here that any constant (i.e., zi = yj ≡ c = const)
is bound to be a solution to (2.17). The following notation is used:

y =
{
. . . ,yT

j , . . .
}T

, yj = S−1
j · yj , y =

{
. . . ,yT

j , . . .
}T

, yi,j = S−1
i · yj ,

ỹi =
{
. . . ,yT

i−kL−1,i−kL−1,y
T
i,i−kL

, . . . ,yT
i,i+kR

,yT
i+kR+1,i+kR+1, . . .

}T
,
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B = {Bij} , Bij = S−1
i ·Bij · Si, Bi=

{
. . . ,Bij−1,Bij ,Bij+1, . . .

}
. (2.28)

Notice, Bij = 0 in (2.28) if j /∈ Ji. Thus, it can be written that Bij = S−1
i ·Bij · Sj

if j /∈ Ji, and hence yi,j = yj,j = S−1
j · yj = yj (∀j /∈ Ji). The stability for (2.17)

provided (2.26)-(2.27) can be addressed by the following.
Lemma 2.5. Consider an explicit scheme that can be written in the form (2.17)

under (2.26), (2.27). Let si = s (Ai) be the spectrum of Ai, and ϕij (λ) be represented
by an absolutely convergent power series at each point λ ∈ si. Let Bij = 0 in (2.17)
if j /∈ Ji = {j : i− kL ≤ j ≤ i + kR}. Then the scheme will be stable if

max
λ∈si

∑

j

∣∣ϕij (λ)
∣∣ ≤ 1, ∀i, (2.29)

∥∥(
S−1

i − S−1
j

) · Sj

∥∥
∞ ≤ Θ = const, ∀i, ∀j ∈ Ji. (2.30)

Proof. It is easy to see that

S−1
i ≡ {

I +
(
S−1

i − S−1
j

) · Sj

} · S−1
j . (2.31)

Then, in view of (2.30), we find ∀i, ∀j ∈ Ji

∥∥S−1
i · yj

∥∥
∞ ≤

∥∥I +
(
S−1

i − S−1
j

) · Sj

∥∥
∞

∥∥S−1
j · yj

∥∥
∞ ≤

{
1 +

∥∥(
S−1

i − S−1
j

) · Sj

∥∥
∞

} ∥∥S−1
j · yj

∥∥
∞ ≤ (1 + Θ)

∥∥S−1
j · yj

∥∥
∞ . (2.32)

By virtue of (2.28), we rewrite (2.17) to read

zi ≡ S−1
i · zi =

∑

j

Bij ·
(
S−1

i · yj

) ≡ Bi · ỹi ≡
〈
Bi

〉 · 〈ỹi〉 , ∀i, (2.33)

where
〈
Bi

〉
and 〈ỹi〉 denote the ordinary matrix and vector obtained from Bi and ỹi,

respectively, by removing the partitions. In view of (2.33) we obtain that

‖zi‖∞ ≡ ∥∥S−1
i · zi

∥∥
∞ ≤ ∥∥〈

Bi

〉∥∥
∞ ‖〈ỹi〉‖∞ , ∀i, (2.34)

The norm ‖〈ỹi〉‖∞ in (2.34) can be estimated by virtue of (2.16) and (2.32):

‖〈ỹi〉‖∞ = ‖ỹi‖∞ ≤ (1 + Θ) max
j

∥∥S−1
j · yj

∥∥
∞ = (1 + Θ) ‖y‖∞ , ∀i. (2.35)

Let us estimate
∥∥〈

Bi

〉∥∥
∞ in (2.34). In view of (2.27) Λi = S−1

i ·Ai · Si. It can be
verified, by induction with respect to n, that (Λi)

n = S−1
i · (Ai)

n · Si. Then, in view
of Theorem 11.2.2 and Theorem 11.2.4 in [29], we find

Bij ≡ S−1
i ·Bij · Si = ϕij

(
S−1

i ·Ai · Si

)
= ϕij (Λi) . (2.36)

Thus, Bij can be written in the form

Bij = diag
{
Λ1

ij , Λ
2
ij , . . . , Λ

M
ij

}
, Λk

ij = ϕij

(
λk

j

)
, k = 1, 2, . . . , M. (2.37)
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In view of (2.37), we find that

∥∥〈
Bi

〉∥∥
∞ = max

k

∑

j

∣∣Λk
ij

∣∣ = max
λ∈si

∑

j

∣∣ϕij (λ)
∣∣ , ∀i. (2.38)

By virtue of (2.35), (2.38), and (2.29) we obtain from (2.34) that
∥∥S−1

i · zi

∥∥
∞ ≤ (1 + Θ) ‖y‖∞ , ∀i. (2.39)

Since

‖z‖∞ ≡ max
i

∥∥S−1
i · zi

∥∥
∞ , (2.40)

we obtain, in view of (2.39), (2.40), that

‖z‖∗ ≡ ‖z‖∞ ≤ (1 + Θ) ‖y‖∞ ≡ (1 + Θ) ‖y‖∗ . (2.41)

The last inequality establishes Lemma 2.5.
We consider the following explicit linear scheme on a uniform grid with time step

∆t and spatial mesh size ∆x

vn+1
i =

∑

j

Bn
ij · vn

j , n ≥ 0, (2.42)

where

Bn
ij =

{
ϕn

ij

(
An

j

)
, j ∈ Ji

0, j /∈ Ji
, ∀i, j, n, (2.43)

Ji = {j : i− kL ≤ j ≤ i + kR} , kL, kR = const, ∀i, n, (2.44)

kL, kR, denote the non-negative integer constants being independent of t, x, ∆x,
and ∆t. It is assumed that the matrix-valued function A = A (x, t) is Lipschitz-
continuous and A is diagonizable, i.e. for An

i = A (xi, tn) there exists a non-singular
matrix Sn

i = S (xi, tn) such that

(Sn
i )−1 ·An

i · Sn
i = Λn

i ≡diag
{

λn,1
i , λn,2

i , . . . , λn,M
i

}
, ∀i, n. (2.45)

Let us note that even if Bn
ij = ϕn

ij (An
i ) in (2.43) and Lemma 2.5 be valid for the

linear scheme (2.42) with Θ = O (∆t) at every time step, the scheme (2.42) will be
“locally stable” only, i.e. any growth in error is, at most, order O (∆t) in one time
step. However, we cannot, in general, show on the basis of (2.41) that

∥∥vNT
∥∥
∗∗ ≤ CT

∥∥v0
∥∥
∗ , CT = const, (2.46)

where ‖·‖∗∗ and ‖·‖∗ denote some norms, vn =
{

. . . , (vn
i )T

, . . .
}T

, NT denotes the
time level corresponding to time T = NT ∆t over which we wish to compute. The
reason is that the vector norm in (2.41) depends on the time level tn, and hence we
maynot apply (2.41) recursively to obtain (2.46). The stability of the system (2.42),
can be addressed by the following.
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Theorem 2.6. Consider an explicit scheme that can be written in the form
(2.42) under (2.43)-(2.45), where the functions ϕn

ij (A) and A (x, t) are both Lipschitz-
continuous. Let there exist ∆x0 > 0 such that the function ϕn

ij (λ) in (2.43) can
be represented by an absolutely convergent power series at each point of the spec-
trum sn

i = s (An
i ) ∀i, n, ∀j ∈ Ji, ∀∆x ≤ ∆x0, and let the matrix-valued func-

tions S (x, t), and S−1 (x, t) in (2.45) can be taken such that the matrix-valued func-
tions

[
(Sn

i )−1− (Sn)−1 (x)
]
· Sn (x) and

[
(Si)

−1 (t)− (Sn
i )−1

]
· Sn

i will be Lipschitz-
continuous in space and, respectively, time ∀i, n. Let

∥∥∥
(
Sn

j

)−1
∥∥∥
∞
≤ β−1 = const,

∥∥Sn
j

∥∥
∞ ≤ β0 = const, ∀j, n. (2.47)

Then the scheme (2.42) will be stable, i.e. (2.46) will be valid, if

max
λ∈sn

i

∑

j

∣∣ϕn
ij (λ)

∣∣ ≤ 1, ∀i, n. (2.48)

Proof. Let B̌n
ij = ϕn

ij (An
i ), and let us rewrite (2.42) to read

vn+1
i = v̌n

i + v̂n
i , ∀i, n, (2.49)

where

v̌n
i =

∑

j

B̌n
ij · vn

j , ∀i, n, ∀j ∈ Ji, (2.50)

v̂n
i =

∑

j

(
Bn

ij − B̌n
ij

) · vn
j , ∀i, n, ∀j ∈ Ji. (2.51)

First, let us estimate the norm, hn (·), of v̌n :
—

hn (v̌n) ≡ ∥∥v̌n∥∥
∞ ≡ max

i

∥∥∥(Sn
i )−1 · v̌n

i

∥∥∥
∞

. (2.52)

Since
[
(Sn

i )−1− (Sn)−1 (x)
]
· Sn (x) and

[
(Si)

−1 (t)− (Sn
i )−1

]
· Sn

i are Lipschitz-
continuous in space and time, respectively, we may write

∥∥∥
[
(Sn

i )−1− (
Sn

i+1

)−1
]
· Sn

i+1

∥∥∥
∞
≤ β1∆x, β1=const, ∀i, n, (2.53)

∥∥∥
[(

Sn+1
i

)−1 − (Sn
i )−1

]
· Sn

i

∥∥∥
∞
≤ β2∆t, β2 = const, ∀i, n. (2.54)

By virtue of (2.53), we find
∥∥∥
[
(Sn

i )−1 − (
Sn

j

)−1
]
· Sn

j

∥∥∥
∞
≤ β3∆x, β3 = const, ∀i, n, ∀j ∈ Ji, (2.55)

where β3 = β1 max(kL, kR). In view of the CFL condition [26], we assume for the
explicit scheme (2.42), that ∆x = O (∆t) (i.e. ∃ ∆t0 > 0, ∃ α0 > 0 such that ∆x ≤
α0∆t ∀∆t ≤ ∆t0). Then we find by virtue of (2.55) that

∥∥∥
{

(Sn
i )−1 − (

Sn
j

)−1
}
· Sn

j

∥∥∥
∞
≤ β4∆t, β4 = α0β3, ∀i, n, ∀j ∈ Ji. (2.56)
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The inequality (2.56) coincides with the assumption (2.30) in Lemma 2.5 under Θ =
β4∆t. Then, in view of Lemma 2.5, we obtain for the scheme (2.50), that

hn (v̌n) ≡ ∥∥v̌n∥∥
∞ ≡ max

i

∥∥∥(Sn
i )−1 · v̌n

i

∥∥∥
∞
≤

[1 + β4∆t]max
i

∥∥∥(Sn
i )−1 · vn

i

∥∥∥
∞
≡ [1 + β4∆t]hn (vn) . (2.57)

Let us now estimate the norm hn (v̂n). Since ϕn
ij (A), A (x, t) are both Lipschitz

continuous, we may write
∥∥ϕn

ij

(
An

j

)− ϕn
ij (An

i )
∥∥
∞ ≤ α1

∥∥An
i −An

j

∥∥
∞ , ∀i, n, ∀j ∈ Ji, (2.58)

∥∥An
i −An

j

∥∥
∞ ≤ α2 |xj − xi| ≤ α3∆x, ∀i, n, ∀j ∈ Ji, (2.59)

where α3 = α2 max(kL, kR), α1, α2 = const. By virtue of (2.58), (2.59), and assuming
that ∆x = O (∆t), we obtain

∥∥Bn
ij − B̌n

ij

∥∥
∞ ≡ ∥∥ϕn

ij

(
An

j

)− ϕn
ij (An

i )
∥∥
∞ ≤ α4∆t, ∀i, n, ∀j ∈ Ji, (2.60)

where α4 = α0α1α3 = const. We obtain from (2.51) that

(Sn
i )−1 · v̂n

i =
∑

j

(Sn
i )−1 · (Bn

ij − B̌n
ij

) · Sn
j ·

(
Sn

j

)−1 · vn
j . (2.61)

Whence, by virtue of (2.60) and (2.47), we obtain
∥∥∥(Sn

i )−1 · v̂n
i

∥∥∥
∞
≤ α5∆tmax

j

∥∥∥
(
Sn

j

)−1 · vn
j

∥∥∥
∞
≡ α5∆thn (vn) , ∀i, n, (2.62)

where α5 = β−1β0α4 max(kL, kR) = const. By virtue of (2.49), (2.57), and (2.62), we
obtain

hn

(
vn+1

) ≤ [1 + β∆t] hn (vn) , β = β4 + α5 = const, ∀n. (2.63)

It is easy to see that
(
Sn+1

i

)−1 ≡
{
I +

((
Sn+1

i

)−1 − (Sn
i )−1

)
· Sn

i

}
· (Sn

i )−1
, (2.64)

whence, by virtue of (2.54), we find

hn+1

(
vn+1

)
= max

i

∥∥∥
(
Sn+1

i

)−1 · vn+1
i

∥∥∥
∞
≤

max
i

∥∥∥I +
((

Sn+1
i

)−1 − (Sn
i )−1

)
· Sn

i

∥∥∥
∞

∥∥∥(Sn
i )−1 · vn+1

i

∥∥∥
∞
≤

(1 + β2∆t)max
i

∥∥∥(Sn
i )−1 · vn+1

i

∥∥∥
∞

= (1 + β2∆t)hn

(
vn+1

)
. (2.65)

In view of (2.63) and (2.65), we find

hn+1

(
vn+1

) ≤ [1 + γ∆t]2 hn (vn) , γ = max (α, β2) , ∀n. (2.66)
12



Applying (2.66) recursively gives

hNT

(
vNT

) ≤ (1 + γ∆t)2NT h0

(
v0

) ≤ CT h0

(
v0

)
, CT = exp (2γT ) . (2.67)

The inequalities in (2.67) prove the theorem.
Remark 2.7. Theorem 2.6 can be generalized for the case when ϕn

ij (λ) in (2.43)
can be represented by a convergent Laurent series.

Let us consider the case when the operator Bn
ij in (2.42) depends on a matrix An

j

belonging to a set of pairwise commutative diagonizable matrices:

Bn
ij = ϕn

ij

(
An

j

)
, An

j ·Am
k = Am

k ·An
j , ∀i, j, n, k,m. (2.68)

In such a case, the S-monotonicity of the system (2.42), can be addressed by the
following.

Theorem 2.8. Consider an explicit scheme that can be written in the form (2.42)
provided (2.68). Let ϕn

ij (λ) in (2.68) can be represented by an absolutely convergent
power series at each point of the spectrum sn

j = s
(
An

j

) ∀i, j, n. Then the scheme
(2.42) will be S-monotone iff

max
λ∈sn

j

∑

i

∣∣ϕn
ij (λ)

∣∣ ≤ 1, ∀j, n. (2.69)

Proof. As An
j belongs to the set of pair-wise permutable diagonizable matrices,

the matrices of the set are simultaneously similar to diagonal matrices [29, p. 318],
i.e., there exists a non-singular matrix S such that

S−1 ·An
j · S = Λn

j≡diag
{

λn,1
j , λn,2

j , . . . , λn,M
j

}
, ∀j, n. (2.70)

where λn,m
j denotes the m-th eigenvalue of An

j . The following notation is used:

vn
j = S−1 · vn

j , B
n

ij = S−1 ·Bn
ij · S, B

n
=

{
B

n

ij

}
, Bn =

{
Bn

ij

}
. (2.71)

By virtue of (2.71), we rewrite (2.42) to read

vn+1
i ≡ S−1 · vn+1

i =
∑

j

B
n

ij · vn
j . (2.72)

Using vn ≡
{

. . . ,
(
vn

j

)T
, . . .

}T

, we rewrite (2.72) to read

vn+1 = B
n · vn, vn+1 ≡

{
. . . ,

(
vn+1

i

)T
, . . .

}T

. (2.73)

In view of (2.73) we obtain that

h
(
vn+1

) ≡
∥∥〈

vn+1
〉∥∥

1
≤

∥∥∥
〈
B

n
〉∥∥∥

1
‖〈vn〉‖1 ≡ h (vn) , (2.74)

where
〈
B

n
〉

and 〈vn〉 denote the ordinary matrix and vector obtained from B
n

and

vn, respectively, by removing the partitions. Let us estimate the norm of
〈
B

n
〉

in
(2.74). Since ϕn

ij (λ) can be represented by an absolutely convergent power series at
13



each point λ ∈ sn
j = s

(
An

j

)
, we find, in view of Theorem 11.2.2 and Theorem 11.2.4

in [29], that

B
n

ij ≡ S−1 ·Bn
ij · S = ϕn

ij

(
S−1 ·An

j · S
)

= ϕn
ij

(
Λn

j

)
. (2.75)

Thus, B
n

ij can be written in the form

Bij = diag
{

Λn,1
ij , Λn,2

ij , . . . , Λn,M
ij

}
, Λn,k

ij = ϕn
ij

(
λn,k

j

)
, k = 1, 2, . . . , M. (2.76)

In view of (2.76), we obtain that

∥∥∥
〈
B

n
〉∥∥∥

1
= max

j

(
max

k=1,...,M

∑

i

∣∣∣Λn,k
ij

∣∣∣
)

= max
j

(
max
λ∈sn

j

∑

i

∣∣ϕn
ij (λ)

∣∣
)

. (2.77)

Whence, in view of (2.69), we find
∥∥∥
〈
B

n
〉∥∥∥

1
≤ 1, ∀n. (2.78)

The vector norm h (·) in (2.74) does not depend on time level. Then, in view of
Proposition 3.2 in [5], the inequality (2.78) proves Theorem 2.8

Remark 2.9. Theorem 2.8 can be generalized for the case when ϕn
ij (λ) in (2.68)

can be represented by a convergent Laurent series. Moreover, this theorem can be
generalized for the case when the operator Bn

ij in (2.42) depends on several pair-
wise commutative diagonizable matrices (analogous theorems for normal matrices are
proven in [4], [5]).

Proposition 2.10. If (2.17) is a variational scheme, then (2.18) is, in general,
not valid. Notice, Lemma 2.5 and Theorem 2.6 are proven without assumption (2.18).
However, in addition to the Lipschitz-continuity of A (x, t) (see (2.26) and (2.43)),
it is assumed in Lemma 2.5 and Theorem 2.6 that some functions of S (x, t) (see
(2.27), (2.45)) are also Lipschitz-continuous. Let us note that the stability of a linear
scheme can often be proven without assumption (2.18) as well as without additional
assumptions on the continuity. To demonstrate it, let us generalize the theorem of
Friedrichs (1954) (see, e.g., [40, p. 120], [43, p. 374]) to be applicable to variational
schemes. Following Friedrichs, we consider the following difference scheme

yn+1 (x) =
m∑

k=−m

Bk (x) · yn (x + k∆x) , x ∈ (−∞,∞) , (2.79)

where yn ∈ RM , Bk ∈ RM×M is a symmetric and non-negative matrix, yn (x) and
Bk (x) are periodic (with the period equal to 1) functions of x. In view of the CFL
condition [26], it is assumed that there exists α0 = const such that ∆x ≤ α0∆t for a
sufficiently small ∆t. Let Fk ≡ F (x + k∆x), and let

(
u,vk

) ≡
1∫

0

[
uT (x) ·v (x + k∆x)

]
dx, ‖u‖ ≡

√
(u,u). (2.80)

If there exist c1, c2 = const such that
∥∥∥∥∥
∑

k

Bk

∥∥∥∥∥ ≤ 1 + c1∆x,
∥∥Bk

k −Bk

∥∥ ≤ c2

2m + 1
∆x, (2.81)
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then the scheme is stable. Notice, it is not assumed that
∑

k Bk (x) = I.
The proof is very little different from the proof when

∑
k Bk (x) = I. Actually, in

view of (2.79) and the first inequality in (2.81), we obtain

‖yn+1‖2 =
∑

k

(
yn+1,Bk · yk

n

) ≤
∑

k

∣∣(yn+1,Bk · yk
n

)∣∣ ≤

0.5
∑

k

(
Bk · yk

n,yk
n

)
+ 0.5 (1 + c1∆x) ‖yn+1‖2 . (2.82)

Since yn (x) and Bk (x) are periodic functions, we obtain from (2.82) that

(1− α0c1∆t) ‖yn+1‖2 ≤
∑

k

(
Bk

k · yk
n,yk

n

)−
∑

k

((
Bk

k −Bk

) · yk
n,yk

n

) ≤

∑

k

(Bk · yn,yn) +
∑

k

∣∣((Bk
k −Bk

) · yk
n,yk

n

)∣∣ . (2.83)

By virtue of (2.81) and (2.83), we find

‖yn+1‖2 ≤ 1 + α0 (c1 + c2)∆t

1− α0c1∆t
‖yn‖2 . (2.84)

Let ∆t0 = const such that 1 − α0c1∆t0 > 0, e.g. ∆t0 = 0.5� (α0c1). Then, for all
∆t < ∆t0 the following inequality will be valid

‖yn+1‖2 ≤ (1 + c3∆t) ‖yn‖2 , c3 = 2α0 (2c1 + c2) = const. (2.85)

The inequality in (2.85) proves Proposition 2.10.

3. Monotone C1 piecewise cubics in construction of central schemes. In
this section we consider some theoretical aspects for high-order interpolation and em-
ployment of monotone C1 piecewise cubics (e.g., [9], [23]) in construction of monotone
central schemes. By virtue of the operator-splitting idea (see also LOS in [42]), the
following chain of equations corresponds to the problem (1.1)

1
2

∂u
∂t

+
∂

∂x
f (u) = 0, tn < t ≤ tn+0.5, u (x, tn) = un (x) , (3.1)

1
2

∂u
∂t

=
1
τ
q (u) , tn+0.5 < t ≤ tn+1, u (x, tn+0.5) = un+0.5 (x) . (3.2)

Using the central differencing, we write

∂u
∂t

∣∣∣∣
t=tn+0.125, x=xi+0.5

=
un+0.25

i+0.5 − un
i+0.5

0.25∆t
+ O

(
(∆t)2

)
, (3.3)

∂f
∂x

∣∣∣∣
t=tn+0.125, x=xi+0.5

=
fn+0.125
i+1 − fn+0.125

i

∆x
+ O

(
(∆x)2

)
. (3.4)

15



By virtue of (3.3)-(3.4) we approximate (3.1) on the cell [xi, xi+1] × [tn, tn+0.25] by
the following difference equation

vn+0.25
i+0.5 = vn

i+0.5 −
∆t

2∆x

(
gn+0.125

i+1 − gn+0.125
i

)
, (3.5)

where vn+β
i+α , gn+β

i+α are the grid functions. In perfect analogy, we obtain on the cell
[xi−0.5, xi+0.5]× [tn+0.25, tn+0.5] that

vn+0.5
i = vn+0.25

i − ∆t

2∆x

(
gn+0.375

i+0.5 − gn+0.375
i−0.5

)
. (3.6)

As usually, the mathematical treatments for the second step of the staggered scheme
(3.5)-(3.6) will, in general, not be included in the text, because (3.6) is quite similar
to (3.5).

Considering that (3.5) approximate (3.1) with the accuracy O
(
(∆x)2 + (∆t)2

)
,

the next problem is to approximate vn
i+0.5 and gn+0.125

i in such a way as to retain the
accuracy of the approximation. For instance, the following approximations

vn
i+0.5 = 0.5

(
vn

i + vn
i+1

)
+ O

(
(∆x)2

)
, gn+0.125

i = f (vn
i ) + O (∆t) , (3.7)

leads to the staggered form of the famed LxF scheme that is of the first-order ap-
proximation (see, e.g., [25], [33]). One way to obtain a higher-order scheme is to use
a higher order interpolation. At the same time it is required of the interpolant to
be monotonicity preserving. Notice, the classic cubic spline does not possess such a
property (see Figure 3.1a). Let us consider the problem of high-order interpolation of
vn

i+0.5 in (3.5) with closer inspection

Let p = p (x) ≡ {
p1 (x) , . . . , pk (x) , . . . , pm (x)

}T be a component-wise monotone
C1 piecewise cubic interpolant (e.g., [9], [23]), and let

pi = p (xi) , p′i = p′ (xi) , ∆pi = pi+1 − pi,

p′i = Ai · ∆pi

∆x
, p′i+1 = Bi · ∆pi

∆x
, (3.8)

where p′i denotes the derivative of the interpolant at x = xi. The diagonal matrices
Ai and Bi in (3.8) are defined as follows

Ai = diag
{
α1

i , α
2
i , . . . , α

m
i

}
, Bi = diag

{
β1

i , β
2
i , . . . , β

m
i

}
. (3.9)

The cubic interpolant, p = p (x), is component-wise monotone on [xi, xi+1] iff one of
the following conditions (e.g., [9], [23]) is satisfied:

(
αk

i − 1
)2

+
(
αk

i − 1
) (

βk
i − 1

)
+

(
βk

i − 1
)2

− 3
(
αk

i + βk
i − 2

)
≤ 0, (3.10)

αk
i + βk

i ≤ 3, αk
i ≥ 0, βk

i ≥ 0, ∀i, k. (3.11)

As reported in [23], the necessary and sufficient conditions for monotonicity of a
C1 piecewise cubic interpolant originally given by Ferguson and Miller (1969), and
independently, by Fritsch and Carlson [9]. The region of monotonicity is shown in
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Fig. 3.1. Monotone piecewise cubic interpolation. (a) Interpolation of a 1-D tabulated function.
Circles: prescribed tabulated values; Dashed line: classic cubic spline; Solid line: monotone piecewise
cubic. (b) Necessary and sufficient conditions for monotonicity. Horizontal hatching: region of
monotonicity; Unshaded: cubic is non-monotone.

Figure 3.1b. The results of implementing a monotone C1 piecewise cubic interpolation
when compared with the classic cubic spline interpolation, are depicted in Figure 3.1a.
We note (Figure 3.1a) that the constructed function produces monotone interpolation
and this function coincides with the classic cubic spline at some sections where the
classic cubic spline is monotone.

Using the cubic segment of the C1 piecewise cubic interpolant, p = p (x), (see,
e.g., [9], [23]) for x ∈ [xi, xi+1], we obtain the following interpolation formula

pi+0.5 = 0.5 (pi + pi+1)− ∆x

8
(
p′i+1 − p′i

)
+ O ((∆x)r) . (3.12)

If p (x) has a continuous fourth derivative, then r = 4 in (3.12), see e.g. [21, p.
111]. However, the exact value of p′i in (3.12) is, in general, unknown, and hence
to construct numerical schemes, employing formulae similar to (3.12), the value of
derivatives p′i must be estimated.

Using (3.12) and the second formula in (3.7) we obtain from (3.5) the following
scheme

vn+0.25
i+0.5 = 0.5

(
vn

i + vn
i+1

)− ∆x

8
(
dn

i+1 − dn
i

)− ∆t

2
f
(
vn

i+1

)− f (vn
i )

∆x
, (3.13)

where dn
i denotes the derivative of the interpolant at x = xi. In view of (3.12) and

the second formula in (3.7), the local truncation error [26, p. 142], ψ, on a sufficiently
smooth solution u(x, t) to (3.1) is found to be

ψ = O (∆t) + O

(
(∆x)r

∆t

)
+ O

(
(∆t)2 + (∆x)2

)
. (3.14)

In view of (3.14) we conclude that the scheme (3.13) generates a conditional approxi-
mation, because it approximates (3.1) only if (∆x)r�∆t → 0 as ∆x → 0 and ∆t → 0.
Let dn

i be approximated with the accuracy O ((∆x)s), then the value of r in (3.14)
can be calculated (see Section 5.1, Proposition 5.1) by the following formula

r = min (4, s + 1) . (3.15)

Interestingly, since (3.13) provides the conditional approximation, the order of accu-
racy depends on the pathway taken by ∆x and ∆t as ∆x → 0 and ∆t → 0. Actually,
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there exists a pathway such that ∆t is proportional to (∆x)µ and the CFL condi-
tion is fulfilled provided µ ≥ 1 and ∆x ≤ ∆x0, where ∆x0 is a positive value. If
we take µ = 1 and s ≥ 1, then we obtain from (3.14) that the scheme (3.13) is of
the first-order. If µ = 2 and s ≥ 3, then (3.13) is of the second-order. However,
if µ = 2 and s = 2, then, in view of (3.14) and (3.15), the scheme (3.13) is of the
first-order. Moreover, under µ = 2 and s = 2, the scheme will be of the first-order
even if gn+0.125

i in (3.5) will be approximated with the accuracy O((∆t)2). It seems
likely that Example 6 in [25] can be seen as an illustration of the last assertion. The
Nessyahu-Tadmor (NT) scheme with the second-order approximation of dn

i is used
[25] to solve a Burgers-type equation. Since ∆t = O((∆x)2) [25], the NT scheme is
of the first-order, and hence it can be the main reason for the scheme to exhibit the
smeared discontinuity computed in [25, Fig. 6.22].

The approximation of derivatives p′i can be done by the following three steps [9]:
(i) an initialization of the derivatives p′i; (ii) the choice of subregion of monotonicity;
(iii) modification of the initialized derivatives p′i to produce a monotone interpolant.

The matter of initialization of the derivatives is the most subtle issue of this
algorithm. Actually, the approximation of p′i must, in general, be done with accu-
racy O((∆x)3) to obtain the second-order scheme when ∆t is proportional to (∆x)2,
inasmuch as central schemes generate a conditional approximation. Thus, using the
two-point or the three-point (centered) difference formula (e.g. [23], [36]) we obtain,
in general, the first-order scheme. The so called limiter functions [23] lead, in gen-
eral, to a low-order scheme as these limiters are often O(∆x) or O((∆x)2) accurate.
Performing the initialization of the derivatives p′i in the interpolation formula (3.12)
by the classic cubic spline interpolation [39], we obtain the approximation, which is
O((∆x)3) accurate (e.g., [21], [23]), and hence, in general, the second-order scheme.
The same accuracy, O((∆x)3), can be achieved by using the four-point approximation
[23].

Obviously, for each interval [xi, xi+1] in which the initialized derivatives p′i, p′i+1

such that at least one point (αk
i , βk

i ) does not belong to the region of monotonicity
(3.10)-(3.11), the derivatives p′i, p

′
i+1 must be modified to p̃′i, p̃

′
i+1 such that the point

(α̃k
i , β̃

k

i ) will be in the region of monotonicity. The modification of the initialized deriv-
atives, would be much simplified if we take a square as a subregion of monotonicity.
Specifically, Fritsch and Carlson [9] gave an effective algorithm for constructing the
monotone piecewise cubic for several subregions including the square: 0 ≤ αi, βi ≤ 3.
In connection with this, we will make use the subregions of monotonicity represented
in the following form:

0 ≤ αk
i ≤ 4ℵ, 0 ≤ βk

i ≤ 4ℵ, ∀i, k, (3.16)

where ℵ is a monotonicity parameter. Obviously, the condition (3.16) is sufficient for
the monotonicity (see Figure 3.1b) provided that 0 ≤ ℵ ≤ 0.75.

Let us now find necessary and sufficient conditions for (3.12) to be G-monotone.
By virtue of (3.8), the interpolation formula (3.12) can be rewritten to read

pi+0.5 =
(

0.5I +
Bi − Ai

8

)
· pi +

(
0.5I− Bi − Ai

8

)
· pi+1. (3.17)

The coefficients of (3.17) will be non-negative iff |βi − αi| ≤ 4. Hence (3.12) will
be G-monotone iff (3.16) will be valid provided 0 ≤ ℵ ≤ 1. Notice, there is no any
contradiction between the sufficient conditions, (3.16) provided 0 ≤ ℵ ≤ 0.75, for

18



the interpolant, p = p (x), to be monotone through the interval [xi, xi+1], and the
necessary and sufficient conditions, (3.16) provided 0 ≤ ℵ ≤ 1, for the scheme (3.17)
to be G-monotone. In the latter case the interpolant, p = p (x), may, in general, be
non-monotone, however at the point i + 0.5 the value of an arbitrary component of
pi+0.5 will be between the corresponding components of pi and pi+1.

To fulfill the conditions of monotonicity (3.16), the modification of derivatives
p′i =

{
p′1i , p′2i , . . . , p′mi

}
can be done by the following algorithm suggested, in fact, by

Fritsch and Carlson [9] (see also [23]):

Sk
i := 4ℵminmod(∆k

i−1, ∆
k
i ), p̃′ki := min mod(p′ki , Sk

i ), ℵ = const, (3.18)

where ∆k
i =

(
pk

i+1 − pk
i

)
�∆x, the function min mod(x, y) is defined (e.g., [23], [25],

[31], [36], [44]) as follows

minmod(x, y) ≡ 1
2

[sgn(x) + sgn(y)] min (|x| , |y|) . (3.19)

4. Concluding remarks. The advantage of Theorem 2.2 (and Theorem 2.1)
is that the scheme in variations corresponding to a non-linear scheme will always
be linear, and hence the stability theory (e.g., [11], [40], [43]) for linear equation
systems can be applied to establish stability of the non-linear scheme. Investigation
of the stability and monotonicity for non-linear schemes is reduced by Theorems 2.2,
2.1, and 2.6 to the sensitivity analysis for the eigenvectors of the Jacobian matrix of
f (u) in (1.1). It should be pointed out that Theorem 2.6 may be used to analyze
schemes approximating (1.1) only if the operators depending on the eigenvectors of
the Jacobian matrix will be Lipschitz-continuous in space and time. Theorem 2.8
is proven without any assumptions on continuity of the coefficients, Bn

ij , in scheme
(2.42). It is important, e.g., in the case when variational schemes are used in the
stability and monotonicity analysis of non-linear difference schemes approximating
hyperbolic PDE systems. The generalization of Friedrichs’ theorem developed in
Proposition 2.10 gives a possibility to investigate the stability of a non-linear scheme
via its scheme in variations without the sensitivity analysis for the eigenvectors of the
Jacobian matrix.

Central schemes provide a conditional approximation, and hence the order of
accuracy depends on the pathway taken by ∆x and ∆t as ∆x → 0 and ∆t → 0. Such
a peculiarity of a central scheme may decrease (or increase) the order of its accuracy.

The theoretical investigation of a possibility to use monotone C1 piecewise cubics
in construction of central schemes revealed that the range of values for the monotonic-
ity parameter ℵ is the segment 0 ≤ ℵ ≤ 1, i.e. the entire square shown in Figure 3.1b.

5. Appendix. Proposition 5.1. Let us find the order of accuracy, r, in (3.12)
if di will be approximated by d̃i with the order of accuracy s, i.e. let

di = d̃i + O ((∆x)s) . (5.1)

Let U (x) be sufficiently smooth, then we can write

Ui+1 = Ui+05 + U ′
i+05

∆x

2
+

1
2
U ′′

i+05

(
∆x

2

)2

+ O
(
(∆x)3

)
, (5.2)

Ui = Ui+05 − U ′
i+05

∆x

2
+

1
2
U ′′

i+05

(
∆x

2

)2

+ O
(
(∆x)3

)
. (5.3)
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Combining the equalities (5.2) and 5.3 we obtain

Ui+1 + Ui = 2Ui+05 +
∂2U

∂x2

∣∣∣∣
i+05

(
∆x

2

)2

+ O
(
(∆x)3

)
. (5.4)

In a similar manner we write:

di+1 = U ′
i+05 + U ′′

i+05

∆x

2
+

1
2
U ′′′

i+05

(
∆x

2

)2

+ O
(
(∆x)3

)
, (5.5)

di = U ′
i+05 − U ′′

i+05

∆x

2
+

1
2
U ′′′

i+05

(
∆x

2

)2

+ O
(
(∆x)3

)
. (5.6)

Subtracting the equations (5.5) and (5.6), we obtain

∂2U

∂x2

∣∣∣∣
i+05

=
di+1 − di

∆x
+ O

(
(∆x)2

)
. (5.7)

In view of (5.7) and (5.1) we obtain from (5.4) the following interpolation formula

Ui+05 =
1
2

(Ui+1 + Ui)− ∆x

8

(
d̃i+1 − d̃i

)
+ O

(
(∆x)4 + (∆x)s+1

)
. (5.8)

In view of (5.8) we obtain that r = min (4, s + 1) .
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