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ABSTRACT

The evolution of astrophysical disks is dominated by instabilities of gravity perturbations (e.g., those produced
by a spontaneous disturbance). We develop a hydrodynamic theory of nonresonant Jeans instability in a dynam-
ically cold subsystem (identified as the gaseous component) of a disk. We show analytically that gravitationally
unstable systems, such as disks of rotationally supported galaxies, protoplanetary disks, and, finally, the solar
nebula are efficient at transporting mass and angular momentum: already on a timescale of on the order of 2–3
rotational periods an unstable disk sees a large portion of its angular momentum transferred outward, and mass
transferred both inward and outward.

Subject headings: galaxies: kinematics and dynamics — planetary systems: formation —
solar system: formation

1. INTRODUCTION

The theory of stability of self-gravitating astrophysical disk
configurations has now been developed quite thoroughly. In-
terest in this theory is due to the efforts to solve such problems
as formation of spiral arms in galaxies (Lin et al. 1969), plan-
etary formation (Boss 2003), and the fine structure of Saturn’s
rings (Griv & Gedalin 2003). It has been shown that the struc-
ture and evolution of such systems are dominated by instabil-
ities of gravity perturbations (those produced by a spontaneous
disturbance or, in rare cases, a companion system). In particular,
unstable (growing) density waves can be self-excited in the
disk via the gravitational Jeans-type instability. In turn, sim-
ulations have already demonstrated that hydrodynamic turbu-
lence due to gravitational instability effectively transports an-
gular momentum, thus providing the disk with a source of
internal viscosity: anomalously high turbulent viscosity is pro-
duced by the disk’s instability (Takeda & Ida 2001). The tur-
bulent stresses in computer-generated disks transport the an-
gular momentum outward, as mass flows inward (Laughlin &
Bodenheimer 1994; Laughlin & Rózyczka 1996; Gammie
2001; Durisen et al. 2007). Note that a turbulent viscosity could
be one source for angular momentum transport in a differen-
tially rotating medium (Lynden-Bell & Pringle 1974). This idea
is inherent in the accretion-disk model of Shakura & Sunyaev
(1973). Another source is provided by the almost stable waves
generated by resonant interactions (Goldreich & Tremaine
1979). Below in this Letter, only nonresonant Jeans instabilities
as a mechanism for the transfer of angular momentum in a disk
are studied. The chief aim in the present theory is to explain
the result of numerical experiments mentioned above. Namely,
gravitational instabilities produce growing density waves and
associated torques, which are potent agents of angular mo-
mentum transport.

The route to turbulence and subsequently to accretion in
neutral disks such as galactic disks, accretion disks, and pro-
toplanetary clouds has remained one of the outstanding puzzles
in astrophysics. As is well known, the accretion of material
onto the center is inefficient if the viscosity in the disk is
determined by the classical molecular transport coefficients;
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the presence of developed turbulence is usually postulated to
explain the observed features. We investigate hereafter the con-
ditions for excitation of the Jeans instability and the possibility
of angular momentum transport arising in various astrophysical
disks. We show that the instability can give rise to the enhanced
outward angular momentum transport (relative to the ordinary
molecular viscosity) needed to account for observations of ac-
creting systems.

2. BASIC EQUATIONS

The dynamical response of a cold gas in the presence of the
collective self-gravitational field is considered. A Lagrangian
description of the motion of a gas element under the influence
of a perturbed field is used, looking for time-dependent waves
which propagate in a two-dimensional disk. This approximation
of an infinitesimally thin disk is a valid approximation if one
considers perturbations with a radial wavelength that is greater
than the disk thickness . The time-dependent surface mass2h
density , the total gravitational potential of the disk (in-j(r, t)
cluding the central object, if it exists at all) , the pressureF(r, t)

, and the fluid velocity are written asP(r, t) v(r, t) X p
, where X stands for any of the above mentionedX (r) � X (r, t)0 1

physical variables, describes the basic flow,X (r) FX /X F K0 1 0

represents the perturbations, ( ) are the cylindrical co-1 r, J, z
ordinates, and the axis of the disk rotation is along the z-axis.
These quantities j, F, and P are then substituted into the equa-
tions of motion of the gas, the continuity equation, and the
Poisson equation; the second-order terms of the order of ,2j1

, and are neglected with respect to the first-order terms.2 2F P1 1

The resulting equations of motion are cyclic in the variables t
and J, and hence by applying the widely used local WKB
method one may seek solutions in the form of normal modes
by expanding

˜ ( )X (r, t) p X exp ik r � imJ � iq t � CC, (1)�1 k r k
k

where is a real amplitude, is the real radial wave-X̃ p const kk r

number, , m is the nonnegative azimuthal mode num-FkFr k 1r

ber, is the complex frequency of excitedq p �q � i�qk k k

waves, subscripts denote the th Fourier component, andk k
“ ” means the complex conjugate. Evidently is a periodicCC X1

function of J, and hence m must be an integer. A disk is
considered to be a superposition of different oscillation modes.
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A disturbance in the disk will grow until it is limited by some
nonlinear effect. In the linear theory, one can select one of the
Fourier harmonics: . This˜X p X exp (ik r � imJ � iqt) � CC1 r

solution represents a spiral plane wave with m arms or a ring
( ). The imaginary part of q corresponds to the growthm p 0
( ) or decay ( ) of the components in time,�q 1 0 �q ! 0

, and the real part to a rotation with con-j , F , P ∝ exp (�qt)1 1 1

stant angular velocity . When , the mediumQ p �q/m �q 1 0p

transfers its energy to the growing wave and oscillation buildup
occurs.

The linearized equations of two-dimensional motion of the
gas element in the frame of reference rotating with angular
velocity Q at the position can be written asr0

2�v dQ �F c �j1 s 1r � 2Qv � 2r xQ p � � , (2)0J�t dr �r j �r0

2�v 1 �F c �j1 s 1J � 2Qv p � � , (3)r�t r �J r j �J0 0 0

where and are the perturbations in the radial and azimuthalv vr J

velocities, is the local speed of sound, and a1/2c p (�P/�j)s 0

local Cartesian coordinate system ( ) is defined viax, y r p
, ,r � x(r , J , t) J p J � J (r , J , t) p Qt � y/r v p0 0 0 0 1 0 0 0 r

, and (Goldreich & Lynden-Bell�x/�t v p r �J /�t p �y/�t0 1J

1965). The Eulerian velocities ( , ) are obtained as a resultu ur J

of the following relations: andu p v u p v � r x(dQ/dr)r J 0r J

(Lin & Lau 1979). The influence of central object (an inertial
halo) enters through . Equations (2) and (3) must be solvedQ(r )0

simultaneously with the continuity equation

t
� j �0 ′( )j p � j v � v dt , (4)1 � 0 r J[ ]�r r �J�� rpr0

where the relatively small term is omitted (Lin & Lauj v /r0 r

1979).
A particular solution of the system of equations (2) and (3)

is obviously

� m
v p q k � i2Q , (5)∗ rr ( )2 2q � k r∗

� m2 2 2( )v p 4Q � k � q � i2Qq k , (6)∗ ∗ rJ [ ]2 2q (q � k ) r∗ ∗

where is the Doppler-shifted wave frequency (inq p q � mQ∗
a rotating frame), is the ep-1/2k p 2Q [1 � (r/2Q)(dQ/dr)] ∼ Q
icyclic frequency, , , and2 2q ( 0 q � k ( 0 � p F �∗ ∗ 1

. These solutions describe the perturbed velocities of the2c j /js 1 0

gas in the radial and azimuthal directions under the action of
the small perturbation, and . As is seen, theFvF Fv F K rQr J

present theory suggests some systematic motions of the gas
element distributed in the form of a spiral-like flow field which
is a correction to the basic circular, equilibrium [ 2rQ p

, where the term is a small cor-2 2�F /�r � (c /j )(�j /�r) ∝ c0 s 0 0 s

rection] motion.

3. DISPERSION RELATION

From equations (4)–(6) it is straightforward to show that

2 2 2 2j � 4Q � k � q m 2Q m0 ∗2j ≈ k � � , (7)1 r( )2 2 2 2q � k q r q rL∗ ∗ ∗

where is the radial scale of inhom-�2 �1FLF p F� ln (Qj k )/�rF0

ogeneity, , and the terms ∝m are small corrections.FLF/r K 1
Only the nonresonant low-frequency ( , ) per-2 2q ( 0 Fq F � k∗ ∗
turbations developing between the Lindblad resonances are
considered (Griv et al. 1999).

Equating the density (eq. [7]) to the density j1 p �FkFF1/j1

2pG given by the asymptotic ( ) solution of the Pois-2 2 2k k m /rr

son equation (Lin & Lau 1979), one obtains the generalized
Lin-Shu dispersion relation

3 2q � q q � 4pQGj (m/rFkFL) p 0, (8)∗ ∗ J 0

where , , and2 2 2 2(k r) k (k L) k 1 k c K 2pGj FkFr r s 0

2 2 2 2 2q p k � 2pGj (k /FkF) � k c (9)J 0 ∗ ∗ s

is the squared Jeans frequency, is the total2 2 2 1/2k p (k � m /r )r

wavenumber, is the squared2 2 2 2k p k {1 � [(2Q/k) � 1] sin w}∗
effective wavenumber, and is the pertur-w p arctan (m/rk )r

bation pitch angle.
From equation (8) in the most important frequency range

, one determines the disper-3 3Fq F ∼ Fq F k 4pQGj (m/rFkFL)∗ J 0

sion law for the Jeans branch of vibrations:

Q m
q ≈ �pFq F � 2pGj , (10)∗1,2 J 0 2q rFkFLJ

where for gravity-stable perturbations with 2 2p p 1 q ≈ q 1∗ J

, for gravity-unstable perturbations with ,2 20 p p i q ≈ q ! 0∗ J

and the term involving is the small correction. In the grav-�1L
ity-unstable case ( ), the local equilibrium param-2 2q ≈ q ! 0∗ J

eters of the disk determine the pattern speed of growing non-
axisymmetric perturbations (in a rotating frame):

2Q { �q /m ≈ 2pGj (Q/Fq F)(1/rFkFL) K Q, (11)p ∗ 0 J

where , , and . Because2 2 2 22pGj FkF ∼ Q Fq F ∼ Q rk FLF k 10 J

does not depend on m, each Fourier component of a per-Q p

turbation in an inhomogeneous system will rotate with the same
constant angular velocity even while the perturbation (for in-
stance the density disturbance) is otherwise growing. The the-
ory states that in homogeneous ( ) disks .FLF r � Q p 0p

From equation (9), the disk is unstable to both axisymmetric
(radial) and nonaxisymmetric (spiral) perturbations if ,c ! cs T

where is the usual Safronov-Toomre (Toomrec p pGj /kT 0

1964) critical sound speed to suppress the instability of only
axisymmetric perturbations.3 The , i.e., nonaxisymmetricm 1 0
instabilities in a differentially rotating ( ), disk is more2Q/k 1 1
difficult to stabilize; stability is achieved only for sufficiently
large sound speed (Lin & Lau 1979; Grivc � (2Q/k)c ≈ 2cs T T

et al. 1999). Thus, if the disk is thin, , and dynamicallyc K rQs

cold, , then such a model will be gravitationally unstable,c ! cs T

and it should almost instantaneously (see below for a time
estimate) take the form of a cartwheel (Griv 2005). Clearly, in
the latter case of both ring and spiral excitation, the distribution
of the surface density along the spiral arms is not uniform, but
describes a sequence of maxima that might be identified with
forming giant gaseous complexes in galaxies or with giant

3 At the limit of gravitational stability, the two conditions and2�q /�k p 0J

are fulfilled. The first condition determines the most unstable wave-2q ≥ 0J

length (the modified Jeans-Toomre wavelength) , corresponding2l ≈ 2c /Gjcrit s 0

to the minimum on the dispersion curve given by eq. (9). Use of the second
condition determines the critical sound speed for the stability of arbitrary but
not only axisymmetric perturbations.
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planets in protoplanetary disks. This dynamical instability is
driven by a strong nonresonant interaction of the gravity fluc-
tuations with the bulk of the particle population, and the dy-
namics of Jeans perturbations can be characterized as a non-
resonant interaction: in equation (7), andq � lk ( 0 l p∗

. One concludes that Toomre’s Q-parameter, , of0, 1 Q p c /cs T

!1 suggests that the disk is likely to be subject to both radial
and spiral instabilities and might therefore be clumpy (Griv
2005). Contrarily, if the uncooled disk is thin and warm,

but (or , respectively),c ≥ c c � (2Q/k)c ≈ 2c 1 ≤ Q � 2s T s T T

then such a disk will be unstable only with respect to spiral
perturbations and cannot therefore fragment. An uncooled hot
model with (or ) is gravitationallyc � (2Q/k)c ≈ 2c Q � 2s T T

stable.
The growth rate of the instability is relatively high, �q ≈∗

, and in general ; that is, the insta-2 1/2[2pGj (k /FkF)] �q ∼ Q0 ∗ ∗
bility develops rapidly on a dynamical timescale. An important
feature of the instability under consideration is the fact that in
a rotating frame it is almost aperiodic ( ). Ac-F�q /�q F K 1∗ ∗
cording to equation (9), the growth rate of the instability has
a maximum at the wavelength . At the threshold2l ≈ 2c /Gjcrit s 0

of the instability, and .2 2c ≈ c l ≈ 2p Gj /k ∼ (2–4)phs T crit 0

This means that of all the harmonics of the initial gravity per-
turbation, the perturbation with , the associated num-l ∼ 10hcrit

ber of spiral arms , and the pitch angle will be formedm wcrit crit

in the time of a single rotation.

4. ANGULAR MOMENTUM TRANSFER

The total torque applied to the disk due to the potential F1

is ; is the z-component of the gravi-tot grav Reyn gravG p G � G G
tational torque and is the contribution to the z-torque fromReynG
the Reynolds stress tensor (Takeda & Ida 2001; Papaloizou &
Terquem 2006).

Gravitational torque.—From its definition, the gravitational
torque per unit area exerted by the perturbations on the disk
is orgrav(1/r)(dG /dr) p �A dJ(r � �F )j S∫ 1 1

2pgrav ′1 dG �F (r, J )1′ ′p � j (r, J ) dJ , (12)G� 1 H′r dr �J0

where A…S denotes the time average over the oscillations. Using
equation (7), in terms of the Fourier components defined in
equation (1), , from equation (12) one finds

�grav gravG p � Gmmp1

grav 21 dG m j Qm 0 ∗≈ �8p F F if �q 1 0, (13)1 1 ∗2r dr rL k �q∗

or if ; , andgrav ∗ 2˜dG /dr p 0 �q ≤ 0 F F p FFF exp (2�q t)m ∗ 1 1 ∗
is the complex conjugate potential. Equation (13) is correct∗F1

only in the main part of the system under study between the
inner and outer Lindblad resonances. A special analysis of the
solution near corotation ( ) and Lindblad ( )q p 0 q � k p 0∗ ∗
resonances is required. Thus, the points and in whichr rILR OLR

are called the points of the inner and outer Lind-q � k p 0∗
blad resonances (ILR and OLR, respectively), and they do not
play an important role in the present theory. Both the wave-
particle and wave-fluid resonances have been investigated
(Lynden-Bell & Kalnajs 1972; Goldreich & Tremaine 1979;
Griv et al. 2000).

From equation (13) one deduces that the distribution of the
angular momentum of a disk will be changed under the action
of only the nonaxisymmetric ∝m, Jeans-unstable ( )�q 1 0∗
perturbations. Moreover, these growing spiral perturbations can
transfer angular momentum only in inhomogeneous disks

[ ]. The latter is anticipated, because in ho-�2(�/�r)(j Qk ) ( 00

mogeneous disks the angular velocity of spiral perturbations
(eq. [11]), and therefore there is no exchange of angularQ p 0p

momentum in the wave-gas system.
Reynolds torque.—The Reynolds torque is caused by par-

ticles’ collective motion associated with the wave structure. In
a rotating frame, this torque per unit area is

2pReyn1 dG 1 �m 2 ′p � r j (r) v v dJ (14)0 G� H[ r J ]r dr r �r 0

(Takeda & Ida 2001). Considering the most unstable pertur-
bations with and , and usingF�q /�q F K 1 �q ≈ 2Q ≈ k∗ ∗
equations (5)–(6), the rate of change of angular momentum per
unit area is given by

Reyn 2 21 dG p m �q � r jm ∗ 0∗≈ k � F F , (15)r 1 1( ) 2r dr r r k �r Q

where and . As is seen,∗ 2 2 2 2˜F F p FFF exp (2�q t) k k m /r1 1 ∗ r

in contrast to the case considered above the distribution of the
angular momentum will be changed under the action of both
forces, nonaxisymmetric ( ) as well as axisymmetricm ( 0
( ) ones. The second conclusion is that the gravitationalm p 0
and Reynolds torques exerted by the growing perturbations are
of the same order of magnitude, grav ReynG /G ∼m m

.2 2 2(m /k r )(r/FLF) ∼ 1r

Because in self-gravitating disks in equilibrium andL ! 0
(Griv 2007), both and2 2 grav(�/�r)(r j /Q ) 1 0 dG /dr0 m

: an applied torque increases the angular momen-ReyndG /dr 1 0m

tum of the given gas element and thus leads to motion of the
gas at a larger radius and thus tends to decrease Q. [As is
known, in a self-gravitating disk is a decreasing functionQ(r)
of r, whereas the angular momentum of a unit mass, , is2Qr
an increasing function of r.] This takes place in the main part
of the disk between the Lindblad resonances where the radial
and spiral waves are self-excited via a nonresonant wave-fluid
interaction. This in turn cannot be done for all masses because
the total orbital momentum must remain constant. Lynden-Bell
& Kalnajs (1972) have shown that particles at the ILR give
out angular momentum, while those at the corotation resonance
and the OLR absorb angular momentum. A system lowers its
rotational energy by transferring angular momentum outward.
(The study of resonances is beyond the scope of the present
Letter.) We speculate that as a result of resonant wave-gas
interaction, a group of inner particles with radii movesr ≈ rILR

inward loosing orbital momentum. At the same time, both res-
onant and nonresonant particles with radii mover ! r ≤ rILR OLR

outward absorbing orbital momentum.

5. DISCUSSION

According to equations (13) and (15), the angular momentum
transfer efficiency of Jeans-unstable density waves depends on
their spatial and temporal form. Let us evaluate the torque for
a realistic model of the disk. For that purpose, only the fastest
growing mode with , , and is consid-m ≈ 1 k p k �q ∼ Q∗ crit ∗
ered. Estimating (an astrophysicist might well2 ∗ 28pm F F ∼ F1 1 0

consider a perturbation with of 1/10 to be quite small)F /F1 0

and , where is the basic potential from equation2 2F ∼ r Q /2 F0 0

(13), one obtains . The angulargrav 3 2F(1/r)(dG /dr)F ∼ j r Q /4FLFm 0

momentum of the given gaseous element is . Then2P p j r Q0

the characteristic time of the angular momentum redistribution
is . Thus, al-grav �1 �1t ∼ P/F(1/r)(dG /dr)F ∼ (4FLF/r)Q ∼ (2–3)Qm

ready on a timescale on the order of 2–3 rotation periods the
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Jeans-unstable disk sees a large portion of its angular momen-
tum transferred outward, and mass transferred both inward and
outward. We do find evidence of angular momentum transport
great enough to be astrophysically important. The distribution
of angular momentum in astrophysical disks may be due to
internal gravitational instabilities that transfer angular momen-
tum between different portions of the disk. Accretion (and
merging) events are keys in the formation of galactic and pro-
toplanetary disks. We emphasize here that enhanced accretion
generated by spontaneous, that is, intrinsic gravitational insta-
bilities may contribute significantly to the evolution of these
systems.

The current theory can explain the results of simulations by
Laughlin & Bodenheimer (1994), Laughlin & Rózyczka
(1996), Gammie (2001), Boss (2003), Durisen et al. (2007),
and others: the evolution of gravitationally (Jeans-) unstable
disks in which magnetic fields play no important role proceeds
in the direction of increasing central mass concentration and
of extending outer portions. The bulk of angular momentum
is transferred radially outward whereas an inner medium moves
inward, loosing a large part of its angular momentum. The
distribution of mass and angular momentum in gravitating as-
trophysical disks is altered by both the ring and spiral evolution
(eqs. [13] and [15]). The outward transfer of orbital momentum
allows the central parts of disks to contract without breaking
up, and the remnant disk is the reservoir for forming gaseous
clouds, stars, or planets. Particularly, the main result of N-body

simulations by Takeda & Ida (2001) is explained: in the pres-
ence of the gravitationally unstable density waves angular mo-
mentum transfer is dominated by both gravitational torque due
to the spiral structure and the Reynolds torque due to the spiral
and ring structures.

The model considered here also has evident application to
the problems of material supply for galactic nuclear activity
(Hopkins & Hernquist 2006) and black hole accretion (Ebisawa
& Kawaguchi 2006). The standard accretion-disk theories by
Shakura & Sunyaev (1973), Lynden-Bell & Pringle (1974),
and Paczyński (1978) have explained angular momentum trans-
port in that they assumed that it is due to turbulent stresses;
turbulent viscosity driven by local disk instabilities was as-
sumed to transfer angular momentum outward, thus making
the accretion of matter onto the central object possible. There
is one important difference between our model and the standard
models, namely in the present one the physical cause for the
turbulence is included self-consistently by considering a com-
bined system of the gasdynamic and Poisson equations.

The authors thank David Eichler, Michael Gedalin, Yury
Luybarsky, and Irena Zlatopolsky for numerous comments on
an early version of the manuscript and for helpful critiques.
This work was supported in part by the Binational Israel-US
Science Foundation, the Israel Science Foundation, and the
Israeli Ministry of Immigrant Absorption in the framework of
the program “KAMEA.”

REFERENCES

Boss, A. P. 2003, ApJ, 599, 577
Ebisawa, K., & Kawaguchi, T. 2006, Adv. Space Res., 38, 2862
Durisen, R. H., Boss, A. P., Nelson, A. F., Quinn, T., & Rise, W. K. M. 2007,

in Protostars and Planets V, ed. B. Reipurth et al. (Tucson: Univ. Arizona
Press), 607

Gammie, C. F. 2001, ApJ, 553, 174
Goldreich, P., & Lynden-Bell, D. 1965, MNRAS, 130, 125
Goldreich, P., & Tremaine, S. 1979, ApJ, 233, 857
Griv, E. 2005, Ap&SS, 299, 371
———. 2007, Planet. Space Sci., 55, 203
Griv, E., & Gedalin, M. 2003, Planet. Space Sci., 51, 899
Griv, E., Gedalin, M., Eichler, D., & Yuan, C. 2000, Phys. Rev. Lett., 84,

4280

Griv, E., Rosenstein, B., & Eichler, D. 1999, A&A, 347, 821
Hopkins, P. F., & Hernquist, L. 2006, ApJS, 166, 1
Laughlin, G., & Bodenheimer, P. 1994, ApJ, 436, 335
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