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ABSTRACT: The function of biological macromolecules
involves large-scale conformational dynamics spanning multi-
ple time scales, from microseconds to seconds. Such
conformational motions, which may involve whole domains
or subunits of a protein, play a key role in allosteric regulation.
There is an urgent need for experimental methods to probe
the fastest of these motions. Single-molecule fluorescence
experiments can in principle be used for observing such
dynamics, but there is a lack of analysis methods that can extract the maximum amount of information from the data, down to the
microsecond time scale. To address this issue, we introduce H2MM, a maximum likelihood estimation algorithm for photon-by-
photon analysis of single-molecule fluorescence resonance energy transfer (FRET) experiments. H2MM is based on analytical
estimators for model parameters, derived using the Baum−Welch algorithm. An efficient and effective method for the calculation
of these estimators is introduced. H2MM is shown to accurately retrieve the reaction times from ∼1 s to ∼10 μs and even faster
when applied to simulations of freely diffusing molecules. We further apply this algorithm to single-molecule FRET data collected
from Holliday junction molecules and show that at low magnesium concentrations their kinetics are as fast as ∼104 s−1. The new
algorithm is particularly suitable for experiments on freely diffusing individual molecules and is readily incorporated into existing
analysis packages. It paves the way for the broad application of single-molecule fluorescence to study ultrafast functional
dynamics of biomolecules.

■ INTRODUCTION

Large-scale conformational changes, often induced by the
binding of a substrate or a ligand, are essential for the activity of
biomacromolecules, be they proteins or nucleic acids.1−3 Such
conformational transitions may cover a broad range of time
scales, from microseconds to seconds. There is a dearth of
methods to study dynamics of biomolecules down to
microseconds. Thus, popular NMR methods such as
relaxation-dispersion spectroscopy4 cannot obtain rates much
faster than 103−104 s−1. Fluorescence correlation techniques
can reach events on the microsecond time scale (and even
faster4,5) but are limited in their ability to evaluate complex
kinetic schemes. Furthermore, correlation methods, like
ultrarapid mixing methods,6 can provide only sums of (forward
and backward) kinetic rates, and additional knowledge (i.e.,
equilibrium propensities of all species) is required to calculate
individual rates.
Single-molecule spectroscopy has dramatically changed the

way we look at dynamical processes in biophysics and
chemistry.7,8 Using a range of optical methods derived from
fluorescence spectroscopy9 and even Raman spectroscopy,10 as
well as a variety of techniques based on force microscopy,11 it is
now possible to dissect the time courses of reactive processes
(e.g., ref 12) and conformational dynamics (e.g., refs 13 and

14) on the level of the individual molecule, thereby overcoming
difficulties due to spatial and temporal heterogeneities. Single-
molecule fluorescence experiments based on fluorescence
resonance energy transfer (FRET)15 can in principle directly
probe the conformational states of a biomolecule at each
moment in time and can therefore directly measure separate
forward and backward rates, rather than their sums, and
characterize multistate kinetics.16

Single-molecule FRET experiments can be performed on
molecules freely diffusing in solution or immobilized next to a
surface. To probe conformational transitions on the micro-
second time scale, it is necessary to conduct measurements
under conditions that generate a large photon flux.17 This is
more readily achieved with freely diffusing molecules. As their
dwell time within the probing laser beam is short, photo-
bleaching at high laser powers is less of a concern. Furthermore,
as the molecules passively diffuse through the laser beam,
thousands of data sets can be readily obtained in a short time.
An additional advantage of experiments on freely diffusing
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molecules is that the potential influence of the surface on the
dynamics does not have to be considered.
A prototypical single-molecule fluorescence experiment

involves molecules diffusing in solution and traversing a
focused laser beam (Figure 1A). Each time a molecule passes
through the beam, it is excited and emits a burst of photons,
whose arrival times at the detector are registered. If the
molecule is double-labeled for FRET, the photons are split
according to color (i.e., donor and acceptor) and registered on
two detectors (Figure 1B). Oftentimes the data is used to
calculate the average FRET efficiency from each photon burst,
and a FRET efficiency histogram is constructed, from which
information on the states of the biomolecule is obtained.
However, much more information is hidden in the stream of
photons, related to transitions between conformational states
(Figure 1C).
Our approach for extracting dynamic information from

single-molecule photon streams down to the microsecond time
scale involves maximum likelihood estimation (MLE)18 on a
photon-by-photon basis. MLE analysis starts with the definition
of a particular kinetic model for the experiment. Typically, it is
assumed that the kinetic model involves a set of discrete states,
whose dynamics are taken as Markovian. The likelihood
function for the experimental data, given the kinetic model, is
then written, and maximization of this function leads to optimal
values for the parameters of the model. As the kinetic states of
the studied system are not directly observed in a single-
molecule experiment and the observables report only indirectly
on these states, the model that describes such a system qualifies
as a HMM.19 In biophysics, HMM techniques have been used
for many years to analyze single-ion-channel recordings20 and
have been more recently adapted to analyze single-molecule
fluorescence21−23 and force experiments.24

In this article, we introduce H2MM, a generalized HMM
algorithm that uses photon arrival times as input to the analysis,
and is particularly suitable for experiments on freely diffusing
molecules, where the excitation intensity varies in time. We first
provide a detailed description of the algorithm. Then, we
demonstrate the capabilities of the method by analysis of
synthetic photon-by-photon trajectories generated by simulat-
ing the dynamics of freely diffusing molecules. We find that
H2MM operates very well on the simulated trajectories (whose
average length is one to several milliseconds). Importantly, the
algorithm can retrieve kinetic rates over a very broad range, as
fast as 105 s−1 and as slow as 1 s−1 (i.e., much longer than the
typical burst duration). Finally, we employ the new algorithm
to analyze measurements of molecules of the well-studied

Holliday junction (HJ). It has been shown before that HJ
dynamics involves two FRET states and that the transition rates
between these states increase when the concentration of MgCl2
is lowered.25−28 We use H2MM to analyze measurements taken
at very low MgCl2 concentrations and show that the rates of
interconversion between the states of HJ can be as fast as ∼104
s−1.

■ THEORY
When a double-labeled molecule diffuses through the laser
beam, three factors determine the instantaneous number of
photons it emits. First, the position of the molecule within the
focused laser beam, whose intensity varies in space, determines
the molecular excitation rate. This is very different from
experiments on immobilized molecules, where the excitation
rate is fixed. Second, the emission rate fluctuates due to shot
noise. Finally, because of dependency of the energy transfer on
the distance between the fluorophores, the conformational state
of the molecule changes the relative number of photons
emitted from the donor and acceptor. Gopich and Szabo
introduced a clever algorithm for the photon-by-photon
analysis of single-molecule FRET trajectories,29 in which the
arrival times of the photons are treated as fixed input, whereas
the “colors” of the photons (i.e., their origin from donor or
acceptor dyes) are assumed to be stochastic variables,
dependent on kinetic model parameters. This feature
significantly simplifies the analysis, particularly for experiments
on freely diffusing molecules, as it allows focusing on the third
of the three factors discussed above. Therefore, we adopt it in
our algorithm. However, we take a different approach than that
by Gopich and Szabo. We write the likelihood function in a way
that allows us to adopt the HMM machinery (see eqs 8 and 9
in the Appendix) and, in particular, the Baum−Welch (BW)
algorithm.19 This approach naturally leads to analytical
estimators for model parameters rather than the numerical
solution inherent in other methods.
The BW HMM algorithm has been applied extensively to

single-molecule experiments, in which the fluorescence
trajectories could be represented in terms of binned quantities
(such as fluorescence intensities or FRET efficiencies).16,21,22

Such trajectories suit very well the standard BW algorithm,
which relies on the propagation of the likelihood from one time
point to the next. In contrast, a photon-by-photon trajectory
contains information only at time points at which a photon was
registered. Information is missing between these time points,
requiring a generalization of the standard BW algorithm. The
missing information can be viewed as another hidden level in

Figure 1. FRET experiments on freely diffusing single molecules reveal transitions between molecular states. When a FRET-labeled molecule diffuses
through a focused laser beam (A), it emits a burst of photons in both the donor and acceptor channels (B). H2MM, a hidden Markov model
(HMM) algorithm for photon-by-photon analysis, uses the photon arrival times (marked by green or red lines) and assigns the sequence of
conformational states visited by a molecule during a photon burst (C). (HF- high FRET efficiency, LF- low FRET efficiency).
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the model, in addition to the indirect relation between
observations and kinetic states, and this is why we term the
method “H2MM”. We show below how to incorporate this
second level of missing information into the likelihood and re-
derive the expressions for parameter estimators.
H2MM Algorithm. We start with a simplified description of

MLE for Markov processes, which allows us to introduce the
estimation formulas for H2MM in a compact manner. The full
derivation of the H2MM equations is provided in the Appendix.
Consider first a simple Markov process describing memory-

less dynamics that involves stochastic transitions among Ns
states. We further assume that multiple (experimental or
simulated) realizations of this process, termed “Markov chains”,
are available. One then needs to estimate the optimal
parameters that describe the Markov process on the basis of
these realizations. Each Markov chain can be described as a
time series X ≡ [x1, x2, ..., xT], where xt is the state of the chain
at time t and T is its total length. The initial state probability,
that is, the probability that the state of the system at the first
time point is i, is defined as πi ≡ p(x1 = i) and the probability of
transition from state i to state j, which is independent of time, is
written as p(xt+1 = j|xt = i) ≡ (Â)i,j = ai,j. These parameters fully
define the model. Given a set of Markov chains, the parameters
can be estimated using the MLE approach. The parameter
estimators can be written in terms of ξ(i, j, t) ≡ P(xt = i, xt+1 = j|
X, λ ̂), which is the probability that chain X has made a
transition from i to j at time t, given a particular set of
parameters λ ̂ ≡ [Â, Π⃗]. First, we write an estimator for the
transition rates
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In the case of the analysis of multiple trajectories, an additional
sum has to be included and is omitted here and in the following
estimators (eqs 2 and 3) for simplicity. In the current simple
case, the transitions can be directly observed in trajectory X.
Therefore, this expression merely counts the number of
transitions from i to j, normalized by the number of
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which equals the number of observed transitions from i to any
state during the first time point.
More often than not, the Markov chain is not directly

registered but is rather observed through a set of noisy
measurements, Y ≡ [y1, y2, ..., yT]. In this case, the variant of the
above algorithm that optimizes the parameters of a model given
the set of measurements is called a HMM. The full specification
of a HMM requires augmenting the simple Markov model with
the observation probability, that is, the probability bi,k ≡ P(yt =
k|xt = i) to obtain a value k for the measurement yt when the
system is in state i. This definition assumes a discrete set of
possible observation values for the measurements, but it can be
readily generalized to include a continuous set of values. If bi,k
provides a unique mapping from yt to xt, we find ourselves back
in the case described above, but when this mapping is not
unique, the likelihood function has to take into account all
possible state sequences that are commensurate with the

sequence of measurements. Thus, although the estimators are
still given by eqs 1 and 2 above, the calculation of ξ(i, j, t) is
more demanding. This is where the BW algorithm comes to
help, providing an ingeniously simple solution in terms of the
so-called forward and backward variables (see the Appendix).
Once provided with the means to calculate ξ(i, j, t), we can

again use eqs 1 and 2 to obtain estimators for the model
parameters, together with eq 3, which provides estimators for
bi,k
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⟨bi,k⟩ is the expected number of times the system is in state i,
showing a value k for the measurement.
As ξ(i, j, t) is a function of the model parameters of the

current iteration, the calculation of parameter estimators is
done iteratively. That is, at each iteration, a new set of
estimators is calculated based on the previous set of estimators
and the data. A nice property of this algorithm is that it
guarantees that the likelihood is increased from one iteration to
the next till convergence.19

In the above algorithm, each time step involves a transition
from one state, i, to another state, j (which could be equal to i).
This implies that information about the system exists at each
time step. This scenario is relevant, for example, to an intensity-
binned single-molecule fluorescence experiment, where each
time bin contains a value for the fluorescence intensity or
FRET efficiency. A photon-by-photon trajectory differs
significantly from this scenario. The arrival of each photon on
one of the detectors provides information about the state of the
system. However, photons are sparse in time, and it is unknown
how the state of the system evolves at time intervals between
them. In principle, the system can undergo multiple interstate
transitions at unknown times between two consecutive
photons. This complication needs to be taken into account in
the calculation of the estimators. It is due to this extra layer of
missing/hidden information that we call our photon-by-photon
algorithm H2MM.
In the framework of H2MM, we start by defining a time unit,

short enough so that the probability to find more than one
photon within it is negligible (we typically use 1 ns). The time
interval between adjacent observed photons can be written as
an integer number of time units, that is, Δtn ≡ tn+1 − tn ∈ N. A
transition from state i to state j may occur at an arbitrary time, t,
between two photon arrival times, that is, tn ≤ t < tn+1.
Therefore, we generalize ξ(i, j, t) and write it in the following
manner
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The first factor in the brackets is the probability that the states
of the system at tn and tn+1 are k and m, respectively, given the
observation set Y and model λ ̂. The second factor is the
probability that a transition from state i to state j occurred at
time t, given that the state of the system upon arrival of the
photon preceding t is k and the state of the system upon arrival
of the photon following t is m.
At first glance, it might seem that the calculation of ξ(i, j, t)

introduces an intensive computational cost, as it needs to be
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computed for a large number of time steps between adjacent
photons (e.g., for all t, tn ≤ t < tn+1). However, we note that the
second factor in eq 4, which deals with system evolution
between photons, does not depend on the experimental data.
Rather, it is a function only of the transition probabilities (see
eq 20 in the Appendix). Therefore, we prepare in advance a
look-out table that accumulates the values for this factor as a
function of the interphoton interval size (Δtn). This dramatically
accelerates the calculation and makes it scale with the number
of photons rather with the number of time units (see the
Appendix for details).
The two probability factors in the sum of eq 4 can thus be

efficiently calculated by an extension of the HMM-related
forward−backward procedure, as detailed in the Appendix. The
values of ξ(i, j, t) obtained in this manner can be plugged into
estimator eqs 1−3. These equations allow us to obtain optimal
parameters from a set of photon-by-photon trajectories given
an arbitrary kinetic model adopted for the data. The ensuing
algorithm, H2MM, is a natural extension of the more common
HMM algorithm. Familiar software packages or Matlab
toolboxes can be readily amended and used to perform this
analysis. The Matlab code for H2MM estimators, based on a
freely distributed HMM MATLAB toolkit (http://www.cs.ubc.
ca/~murphyk/Software/HMM/hmm.html), is attached as
Supporting Information.

■ RESULTS

H2MM Analysis of Simulated Data. To test our approach,
we applied H2MM analysis to a set of photon-by-photon single-
molecule trajectories generated using numeric simulations of
freely diffusing molecules (for details, see the Supporting
Information). Each molecule was assumed to interconvert
between two states (with low and high FRET efficiency values,

called LF and HF, respectively) with rates that we call “forward
and backward transition rates” (k1, k−1, Figure 2A). The FRET
efficiency values of the two states were set to match those of HJ
molecules (see the next section; LF = 0.30 and HF = 0.75;
Figure 2B,D), and the transition rates were varied from k1, k−1
= 100−105 s−1 (dwell times of 1000−0.01 ms, respectively;
Figure 2C). The simulated molecules were assumed to emit
photons in the donor and acceptor channels as they diffused
through a laser spot and generate “fluorescent bursts”. The
diffusion rate and fluorophore brightness were set such that the
burst duration and burst size distributions matched those
obtained in the experiments with HJ molecules described below
(Figure S1). The simulated data was analyzed using procedures
described in the Supporting Information.
FRET histograms obtained from the simulated data are

shown in Figure 2B. Double-peaked histograms are obtained
when the dynamics is slower than the averaged burst duration,
whereas a single-peaked histogram is obtained when the
dynamics are faster than the burst duration.30 Excellent
agreement was found between the simulated and H2MM-
retrieved transition rates and FRET efficiencies (Figure 2C,D),
indicating that the H2MM analysis was able to recover the four
parameters of the simulated two-state system over the full range
of rates examined. The H2MM analysis results deviated from
the simulation by less than 0.1% for the FRET efficiencies for
all data points and by less than 9% for all rates excluding the
very slow rates (2 s−1). Importantly, even when the simulated
rates were significantly slower than the average burst duration
(as in the cases with rates of 2 and 20 s−1), H2MM was still able
to retrieve parameters that agreed well with the simulated ones.
The excellent agreement between the fitted and simulated
parameters was also maintained when the rates were as high as
105 s−1 (1.3% error). Given the average photon flux in the
simulated fluorescence bursts, which rarely exceeded 1000

Figure 2. H2MM analysis of simulated freely diffusing two-state molecules. (A) Schematic of the simulated two-state system with LF and HF states
and k1, k−1 transition rates. (B) FRET histograms of the simulated molecules. The results obtained with transition rates 100, 400, 1000, and 10 000
s−1 (blue, green, red, and black lines, respectively) are shown. The forward and backward rates were identical (k1 = k−1). (C) Comparison of the
simulated transition rates (black line) and the transition rates obtained by H2MM analysis (k1, red triangles; k−1, green circles). (D) Comparison of
the FRET efficiencies of the simulated HF and LF states (red and green lines, respectively) and those obtained by H2MM analysis (red triangles and
green circles, respectively). Standard errors calculated from several independent simulations are smaller than the symbol sizes.
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photons/ms, this finding suggests that even a few photons from
each state were sufficient for H2MM to identify states and
transitions between them. This highly attractive feature of the
H2MM algorithm is further discussed below.
Single-Molecule FRET Measurements of HJ Dynamics.

To test H2MM against experimental data, we turned to HJ
dynamics (Figure 3A).25−28 We measured donor- and acceptor-
labeled HJ molecules using diffusion-based single-molecule
FRET spectroscopy with alternating laser excitation.30 (For
details, see the Supporting Information text and Figure S2.)
The experiments were performed over a range of MgCl2
concentrations (0.065−20 mM) that were expected to result
in rates spanning over 2−3 orders of magnitudes.25−28 The first
indication of the broad range of rates was a significant
dependence of the shapes of the FRET histograms on MgCl2
concentration (Figure 3B). To analyze the data, we applied
H2MM with a two-state model. The optimized transition rates
(k1, k−1) and LF and HF FRET efficiency values are shown in
Figure 3C,D, respectively.
The HJ transition rates increased over more than 2 orders of

magnitude as the concentration of MgCl2 was decreased (from
∼5 × 101 to ∼8 × 103 s−1). The forward and backward rates
were almost identical as is expected for the DNA sequences
used in this work. We observed a weak dependence of the
FRET efficiencies of the HJ states on the MgCl2 concentration
(Figure 3D), which could be a result of minute changes of the
HJ conformation or a result of weak influence of MgCl2 on the
photophysical properties of the dyes.
Two sample single-molecule trajectories obtained from

photon bursts are shown in Figure 3E,F. Photon-by-photon
data were binned to present them in the figure. Anticorrelated
transitions between the two states on a sub-millisecond time

scale are clearly observed in the data. However, intensity
variations due to the passage of the molecules through the
focused laser beam, as well as photon shot noise, preclude
direct state assignment from the trajectories. The H2MM
analysis provides a simple route to state assignment through the
Viterbi algorithm (see the Supporting Information), as shown
in the figure. It is important to note that the assignment is
effectively based on the whole data set, rather than the specific
photon burst.

Evaluating the Influence of Acceptor Photophysics.
Photophysical processes of the dyes may interfere with the
correct retrieval of parameters in the analysis of single-molecule
fluorescence data. To examine a possible influence of acceptor
blinking on the observed transition rates, we measured HJ
molecules using a laser power 3 times stronger than that shown
in Figure 2 (300 μW). A stronger laser power may result in
increased blinking of both donor and acceptor dyes, but the
former would have no influence on the H2MM analysis,31

whereas the latter may result in apparently faster transition
rates. We analyzed both data measured at low and the high laser
power (Figure 4) using a three-state H2MM model. This model
assumed that three states were connected in a row-like fashion
with transitions between neighboring states, that is, S1 ⇄ S2 ⇄
S3, with S1 being the low-FRET state, S2, the high-FRET state,
and S3, a blinking (dark) state. The forward and backward
transition rates, the blinking and recovery rates, and the LF-,
HF-, and dark-state FRET values are presented in Figure S3.
In the case of low-laser-power measurements, the two- and

three-state H2MM analyses yielded almost identical transition
rates (Figure 3), indicating that acceptor blinking did not
significantly increase the obtained rates at this laser power. In
the case of the high laser power, however, the two-state H2MM

Figure 3. H2MM analysis of HJ dynamics. (A) Schematic of HJ dynamics with LF and HF states and forward and backward transition rates (k1 and
k−1, respectively). (B) Experimental FRET histograms for HJs measured at 0.034, 1.5, 3.0, and 20 mM MgCl2 concentrations (black, red, green, and
blue lines, respectively). (C) H2MM-retrieved transition rates (k1 and k−1 are shown in red triangles and green circles, respectively). (D) H2MM-
retrieved FRET efficiencies (LF and HF are shown in green triangles and red circles, respectively). The excitation laser power was 100 μW. Error
bars are standard deviations calculated from independent experiments measured under identical conditions. (E) Sample single-molecule trajectory
obtained from a single photon burst measured at 0.5 mM MgCl2. Upper panel: binned raw data (green, donor; red, acceptor). Lower panel: FRET
efficiency calculated from the data (blue), with state annotations from the H2MM analysis (orange). (F) Sample single-molecule trajectory obtained
from a single photon burst measured at 0.8 mM MgCl2. Upper panel: binned raw data (green, donor; red, acceptor). Lower panel: FRET efficiency
calculated from the data (blue), with state annotations from the H2MM analysis (orange).
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analysis yielded notably faster dynamics (specifically in the high
MgCl2 concentration regime where the transition rates are
slow), and a three-state H2MM analysis mitigated some of the
blinking effect on the extracted rates. Transitions between the
LF and the dark state, ignored in the above description, are in
principle also possible. Accordingly, we analyzed the HJ data
using a four-state H2MM model, where both the LF and HF
states had a corresponding dark state. In some cases, the
analysis yielded almost identical transition rates to the above,
and in other cases, the analysis yielded results that pointed to
the problems in convergence of this rather complex model
(data not shown). Therefore, we limit detailed analysis to two-
and three-state models.
Considering these results, we conclude that acceptor blinking

may slightly influence the retrieved transition rates; however,
using different laser power and a H2MM model that considers
explicitly a dark state, it should be possible to asses and mitigate
the influence of blinking.
Comparison of H2MM and Probability Distribution

Analysis (PDA). To further test the validity of the parameters
obtained with the new method, we also analyzed our data using
the PDA (see the Supporting Information text)30 and
compared the results to those of H2MM (Figure S4). The
PDA method extracts transition rates and FRET efficiency
values by fitting the FRET distributions. This approach
effectively bins the data according to burst durations (1−5
ms). As a result, the PDA could not reliably resolve dynamics
faster than ∼3 ms (see the Supporting Information text and
Figure S4). The PDA transition rates were slower by about 50%
than those obtained with the two-state H2MM. Analysis of
simulated data showed that PDA underestimates the transition
rates by about 20−30% (Figure S5), whereas no systematic
errors were observed in H2MM analysis of simulated data
(Figure 2).

■ DISCUSSION
In this work, we introduced a novel algorithm for photon-by-
photon analysis of single-molecule FRET data, H2MM. The
new method is especially geared towards experiments on freely
diffusing molecules and fully utilizes the advantages of the
HMM analysis machinery, including the BW algorithm and
related methods. In these two aspects, it deviates significantly

from previous work that used numerical methods to maximize a
photon-by-photon likelihood29,32−34 or from the work that
focused on immobilized molecules, where the average
fluorescence intensity could be assumed constant.35 Using
HMM analysis allows us to obtain analytical expressions for
parameter estimators, which can be readily incorporated into
existing HMM packages. The latter feature is a major
advantage, as it facilitates the implementation of the method
by nonexpert practitioners. Furthermore, relying on analytical
expressions, rather than numerical analysis, implies more robust
optimization procedures. Indeed, it has been shown that the
BW algorithm guarantees that the likelihood never decreases
from one iteration of the analysis to the next.19 In addition, the
use of analytical expressions for estimators facilitates general-
ization of the analysis to an arbitrary number of states.36 This
capability may be useful for the analysis of complex folding
scenarios or complex conformational dynamics and further
enables treatment of photophysical artifacts, as shown above.
Through analysis of simulated data, we showed that H2MM

accurately retrieves transition statistics over 5 orders of
magnitude of time. First, because the analysis is done on a
photon-by-photon basis, the full time resolution provided by
the measured flux of photons is utilized. Thus, with a photon
flux of 106 photons/s, which is high yet not very difficult to
achieve in experiments on diffusing molecules, one can readily
retrieve transition times of a few microseconds. Interestingly,
with such fast switching times between states, the FRET
histogram would typically show a single peak (the fast exchange
limit). Therefore, FRET histogram-based methods such as PDA
may fail to obtain the correct transition rates, whereas H2MM
has no such problem. Second, because the analysis takes into
account the whole statistics obtained from multiple fluores-
cence bursts, including bursts that do not show any transitions
between states, it is possible to obtain state-to-state transition
times that are significantly longer than burst durations. This is
because transition times that are X times slower than the
diffusion time of the molecules through the laser beam will still
be found in 1/X of the bursts. The sensitivity to slow dynamics
could be further improved if recurrences of the same molecule
through the beam are taken into account. Hoffmann et al.37

showed that the probability that two consecutive bursts
originate from the same molecule can be calculated directly
from the data and taken into account. We intend to integrate
this capability into the H2MM analysis, thereby improving the
sensitivity of the method to slow dynamics even further.
To demonstrate the significant utility of H2MM, we applied

it here to analyze experimental data on HJ molecules at the
limit of very fast dynamics, that is, essentially in the absence of
magnesium. We were able to identify rates that are 5−10 times
faster than those reported previously.25,27 We argue that H2MM
should be useful for a broad spectrum of problems in fast
dynamics of biomolecules. For example, we envision that
H2MM will facilitate the study of domain closure in enzymes or
binding-induced conformational transitions, processes that may
occur on the microsecond time scale. Obviously, the ability to
recover fast dynamics depends on the photon flux and the
FRET efficiency difference between states (as well as other
parameters). Nevertheless, the introduction of the H2MM
algorithm provides a clear route for the application of single-
molecule fluorescence spectroscopy on freely diffusing
molecules for studying fast dynamics.

Figure 4. Influence of acceptor blinking on H2MM-retreived transition
rates of HJ molecules. Measurements were conducted using low and
high laser powers (100 and 300 μW, respectively), and data was
analyzed using H2MM with two or three states. Black and red squares:
two- and three-state analysis (respectively) of low-laser-power data.
Blue and olive circles: two- and three-state analysis (respectively) of
high-laser-power data. For clarity, only the averages of forward and
backward rates ((k1 + k−1)/2) are shown. Error bars are standard
deviations calculated from independent experiments measured under
identical conditions.
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■ APPENDIX: THE H2MM ALGORITHM
In this appendix, we describe in detail the theory behind
H2MM while drawing on its relation to standard HMM
methodology, specifically the BW algorithm and the related
forward−backward procedure.
Let Y be a sequence of M observations, Y ≡ [y1, y2, ..., yM],

which represent the color of photons detected from a single
molecule at times T⃗ ≡ [t1, t2, ..., tM], where T⃗ is given in terms
of our defined time unit, τ (see below). The color
representation of photons is discretized, that is, yt ∈ [1, 2, ...,
Np], where Np is the number of symbols used to represent
photon color categories. In the single-molecule FRET experi-
ment, photons are usually classified into two categories, so that
yt ∈ [1,2], where “1”/“2” represent “green”/“red” photons,
respectively.
Note that the photons are detected at random; hence, the

time interval between adjacent observations is not constant but
is nevertheless an integer number, that is

Δ ≡ − ∈+t t Nt n n1n

To achieve the maximum possible temporal resolution, we
choose τ such that τ ≪ mean(Δtn). In this work, τ is 1 ns.
The evolution of the state of a molecule is described by a

Markov chain, with Ns states. The Markov chain is denoted X ≡
[x1, x2, ..., xtM], where xt is the state at time t, that is, xt ∈ [1, 2,
..., Ns]. The complete HMM used to analyze the data is
denoted here λ ̂ and has three types of parameters:
First, Π⃗ is the initial probability vector of the states of the

molecule, such that (Π⃗)i is the probability that state i is
populated in the first time point

π λΠ⃗ ≡ = = | ̂P x i( ) ( )i i 1 (5)

where 1 ≤ i ≤ Ns.
Second, Â is the transition probability matrix, that is, (Â)i,j is

the probability of transition from state i to state j; this quantity
is independent of time, as required for a time-homogeneous
Markov chain

λ̂ ≡ = = | = ̂

≤ ≤

+A a P x j x i t

i j N

( ) ( , ) for all and 1

,

i j i j t t, , 1

s (6)

Finally, B̂ is the emission probability matrix, that is, (B̂)i,k is the
probability of observing symbol k in state i.

λ̂ ≡ = = | = ̂

≤ ≤

≤ ≤⎪ ⎪
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⎬
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where Np is the total number of different observation symbols.
It is worth noting that Π⃗, Â, and B̂ are row stochastic, that is,

∑
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, and are also independent of each

other.
The likelihood function, L(Y, λ ̂), is defined as the probability

to obtain the observation sequence, Y, as a function of the
model parameters

∑λ λ λ̂ ≡ | ̂ = | ̂L Y P Y P X Y( , ) ( ) [ ( , )]
X (8)

where the sum is carried over all possible realizations of X.
The summand on the right-hand side of eq 8, that is, P(X,

Y|λ ̂), is the joint probability of Y and any realization of X, given
λ ̂. P(X, Y|λ ̂) is given by

∏

∏
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∑

∑ ∑

∑ ∑

π λ π δ δ

λ δ δ

λ δ δ

≡ | ̂ = · ≡
=

≠

≡ | ̂ = · ·

= | ̂ = · ̂ ·

=

= =

Δ

= =

Δ

+ + +

⎪

⎪
⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎧⎨
⎩

⎫

⎬

⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪

P x
i j

i j

b P y x b

A P x A

( ) [ ], with
1,

0,

( , ) [ ]

( x , ) [ ( ) ]

x t
k

N

k x k i j

x y t t
k

N

m

N

x k k m m y

x
t

t t
k

N

m

N

x k
t

k m m x

1
, ,

,
1 1

, , ,

1 1
, , ,

t

tn tn n n tn tn

tn xtn

n
n n tn

n

tn

1 1

s

1

s p

, 1 1

s s

1

Note that eq 9 reduces to the familiar HMM expression for
P(X, Y|λ ̂)19 if Δtn is set to 1 for all n ∈ [1, 2, ..., M − 1].
In the Supporting Information, we exploit this similarity to

formally show that the HMM parameter re-estimation formulas
(eqs 1−3) also apply in the H2MM case. Here, we proceed to
derive the algorithm to calculate ξ(i, j, t).
As shown in eq 4 of the main text, ξ(i, j, t) can be written as a

sum over two factors
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(4a)
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where t is assumed to lie within the Δtn interval, that is, tn ≤ t <
tn+1.
The first factor of eq 4a is denoted ξ*(k, m, tn) ≡ P(xtn = k,

xtn+1 = m|Y, λ ̂), and is the likelihood that states k and m were
populated at times tn and tn+1, respectively, given observation
sequence Y and parameter set λ ̂. This factor is calculated using a
procedure which is a straightforward generalization of the
HMM-related forward−backward procedure.
First, a forward variable is defined as α*(i, tn) ≡ P([yt1, yt2, ...,

ytn], Xtn = i|λ ̂), that is, the probability of the partial observation
sequence [yt1, yt2, ..., ytn] (until time tn) and of state i at time tn,
given λ ̂. α* is computed using the following recursion rules:
Initialization step

α π* =i t b( , ) i i y1 , t1 (10)

where bi y, t1
≡ Σk=1

Ns bi,k δk y, t1
, and forward recursion step

∑α α* = * ̂+
=

Δ

+
i t k t A b( , ) ( , )n

k

N

n k i i y1
1

, ,
tn

tn

s

1 (11)

For comparison, the standard HMM counterpart to eq 11 is
given by

∑α α= ̂+
=

+
i t k t A b( , ) ( , )n

k

N

n k i i y1
1

,
1

, tn

s

1 (12)

Second, a backward variable is defined as β*(j, tn) ≡ P([ytn+1,

ytn+2, ..., ytM]|xtn = j, λ ̂), that is, the likelihood of the partial
observation sequence from tn+1 to the end, given state j at time
tn and λ ̂. β* is computed by the following recursion rules:
Initialization step

β* =i t( , ) 1M (13)

and backward recursion step

∑β β* = ̂ *−
=

Δ −i t A k t b( , ) ( , )n
k
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tn
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s
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For standard HMM, we have

∑β β= ̂−
=

i t A k t b( , ) ( , )n
k
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1

,
1

, tn

s
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In practice, and for reasons related to numerical precision,
normalized versions of α* and β* are used

α
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where cα(tn) and cβ(tn) are given by
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The normalization factors can in fact be used to calculate the
likelihood through

∑ ∑λ = =α β
= =

Y c t c tlogL( , ) log( ( )) log( ( ))
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Using α′ and β′, we can calculate ξ*(k, m, tn) as
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The second factor in eq 4a, P(xt = i, xt+1 = j|xtn = k, tn+1 m, λ ̂), is
the probability of having a transition from state i to j at time t, tn
≤ t < tn+1, given that the states at tn and tn+1 are k and m,
respectively, and given λ ̂. This factor can be written as follows
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where tn ≤ t < tn+1 and 1 ≤ k, m, i, j ≤ Ns.
Using ξ*(k, m, tn) of eq 19 and P(Xt = i, Xt+1 = j|Xtn = k, Xtn+1

= m, λ ̂) of eq 20, we can now compute ξ(i, j, t) of eq 4a, which
can in turn be substituted into the parameter re-estimation
equations (eqs 1−3), thus essentially providing an exact
solution to the H2MM parameter optimization problem.
However, this is not a tractable solution, as the number of

time points for which we need to compute ξ(i, j, t) scales
inversely with τ. We show below how one can reduce the
computational cost and make the number of computations
scale with the number of photons.
To this end, we make the following definition
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ρ is a sum over the numerator of the right-hand side of eq 20.
Before deriving an expression for ρ, let us demonstrate its

usefulness in reducing the computational cost.
Using eqs 4a, 19, and 21, we can express Σt=tn

tn+1−1 ξ(i, j, t), the

expected number of transitions from state i to j during the Δtn

interval, as
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We can substitute this relation into the transition probability re-
estimation formula (eq 1) and get
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In this equation, M is the total number of photons.
The estimator of eq 23 requires computation of ξ*(k, m, tn)

at the photon arrival times and computation of ρk,m,i,j(Δtn) for

all unique interphoton intervals Δtn in the data. Therefore, the
number of steps related to the latter calculation scales with the
number of photons rather than the number of time units. To
implement this calculation, we need to derive an expression for
ρk,m,i,j(Δtn), which is done by forward recursion:
Initialization step

ρ δ δΔ = = a( 1)k m i j t k i i j j m, , , , , , (24)

and recursion step

∑ρ ρ δΔ + = Δ + ̂
=

Δa A a( 1) ( )k m i j t
z

N

k z i j z m k i i j j m, , ,
1

, , , t , , , ,
t

s

(25)

The first term on the right-hand side of eq 25 corresponds to
transitions between states i and j that occur during the interval
Δt. The second term represents a transition that occurs in the
new time interval following Δt. Using the recursion rules of eqs
24 and 25, we need to calculate ρk,m,i,j(Δt) for all unique values

of Δt in the range [1, 2, ..., max(Δtn)]. We can do even fewer

calculations if we generalize eq 25 in the following manner:
Generalized recursion step

∑

∑

ρ ρ

ρ
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(26)

where both Δtv and Δtq are integers.

To fully utilize the recursion rule of eq 26, we define Δ
⎯→

t , an
augmented list of interphoton time intervals. This list is
predominantly composed of the unique interphoton intervals in

the data. Additional elements in Δ
⎯→

t are auxiliary intervals

selected to guarantee that every interval in Δ
⎯→

t (apart from Δt =
1) can be written as a sum of two smaller intervals, that is, Δtu =

Δtv + Δtq, where Δtu, Δtv, Δtq ∈ Δ
⎯→

t . As an example, let us

consider the following set of time intervals, [3, 5, 9, 10, 12], to

Figure 5. Flowchart of H2MM analysis. The flowchart shows the practical progress of the analysis based on the equations in the Appendix. The
Matlab code for H2MM analysis is attached as a Supporting Information.
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which we will need to add [1, 2, 4] and thus get Δ
⎯→

t = [1, 2, 3, 4,
5, 9, 10, 12], which can be written as [1, 1 + 1, 1 + 2, 1 + 3, 1 +
4, 4 + 5, 1 + 9, 2 + 10].
Now we have in our hands all the ingredients for the

estimation of parameters based on the H2MM algorithm. We
conclude this Appendix by giving the complete H2MM
estimation formulas written for the important case of multiple
independent trajectories
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where W is the number of trajectories, Ml is the number of
photons in the l’th trajectory, and the subscript l in ξl* denotes
that it was evaluated for the l’th trajectory.
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where Σk=1
Ns ξl(i, k, tn) can be written as
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and
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The flowchart in Figure 5 shows how to combine all the
procedures above into one algorithm that is used to compute
the final model estimators.
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