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Modified Born-Oppenheimer basis for nonadiabatic coupling: Application
to the vibronic spectrum of HD *
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Nonadiabatic matrix elements, when computed using a Born-OppenhéB®rbasis, do not
vanish asymptotically because the motion of the electrons with the nuclei at large internuclear
separations is not taken into account. We apply a method suggested by RelodMod. Phys53,
287(1981] to include the effect of electron translation factors in a quantum-mechanical framework,
thus correcting the BO basis to incorporate proper boundary conditions. We calculate the
nonadiabatic matrix elements for;Hand its isotopic variants. We focus our calculations on"HD

for which experimental results exist, and calculate its vibronic spectrum. This is the first application
of this method to calculate high precision spectroscopic information for molecular systems.
© 1999 American Institute of Physids$0021-960809)01331-9

I. INTRODUCTION the use of the BO basis in calculations involving nonadia-

. . . batic corrections to structure and dynamics. However, an at-

Many calculations in molecular quantum chemistry rely . . Co
tempt to use a simple expansion of the total wave function in

on the Born-OppenheimeiBO) approximation, in which, . S
due to the large ratio between the mass of the electron antg rms of BO states leads to serious probléfsThis is be-

nuclei, the motion of the electrons is calculated in the presgause the BO wave functions do not account for the motion

ence of nuclei that are fixed in spateéTherefore, the elec- of the glectron with one of the_nuclfei at Iarge intern_uclear
tronic motion depends parametrically on the position of theseparatlop. It results n nonadlabatllc coupling matrix ele-
nuclei, but not on their momenta. Such calculations are ofteﬁne_ntS which do not vanish asymptotically. Therefore a scat-
performed using one potential energy surface—the electronite" N9 theory can not be developed, and bound-state proper-
ground state surface. In cases where there is a large diffefl€S aré incorrectly determined. In classical and semiclassical
ence in energy between the ground state and the excitdgeories of mole_cular dy_namlcs, this eIectronlc_ motion is in-
states, the BO approximation is often adequate. However, ifPrPorated by introducing “electron translation factors”
many cases, today’s experiments and calculations are reactf TFS which multiply the BO wave functions, and describe
ing the point where the accuracy required does not justify th&1€ change in momentum and kinetic energy of the electrons
use of the BO approximation. Moreover, for processes in@S they ride on the nuclei at large internuclear separdfibn.

volving excited electronic states, or where more than ondncorporation of the effect of the asymptotic motion of elec-
potential energy surface correlates to the same asymptotfons with the nuclei in a quantum-mechanical theory is nec-
limit, and particularly in the vicinity of curve-crossing, the €ssary in order to describe structure and dynamics correctly.
BO approximation can become a poor approximation. ond 0 date, calculations using these concepts have only been
way to go beyond the BO approximation is to include nona_Worked out in the context of collision dynamfcand have
diabatic correction terms by expanding the total wave funchot been tested in the regime of high precision spectroscopy
tion in an adiabatic representation using a BO bé8@BS).  Where stringent comparison with high quality data can be
In this way, the interaction between the electronic degrees ohade.
freedom and the nuclear degrees of freedom is taken into Other methods exist that can be used to calculate vi-
account, and higher accuracy can be attained. This method gonic energies of B without taking ETFs into account.
sometimes referred to as perturbed stationary stR&S  Among them is the variational method of Bishtig;2which
theory® uses analytic functions as a basis set. This method is accurate
One of the few molecular systems where an exacbnly when low lying bound states are involved. The method
quantum-mechanical calculation of the BO wave functionof Wolniewicz and Polt**®is based on perturbation theory,
can be performed is the one-electron syster, knd its  but can not be used for excited states. Moss has significantly
isotopic variants. The electronic wave function can be solvedmproved the accuracy of the calculations by using the trans-
exactly, since the electronic Hamiltonian is separable upoformed Hamiltonian methotf, and the artificial channel
transforming to prolate spheroidal coordinates. Hence, onmethod of Balint-Kurtiet all’ However, although the results
can calculate the nonadiabatic corrections exactly, estimatef Moss for the transition frequencies of the ground state of
their contribution to bound-state energies, and determine coHD™ are the most accurate to date, this method is also lim-
lisional information (e.g., cross sectiohs This system is ited when bound-state energies of the excited states are in-
ideal for testing the BO approximation, and also for testingvolved. Furthermore, this method does not produce a wave
function. The reviews by Carringtoet al!® and Leach and
dpresent address: Department of Chemical Engineering, The TechnologicMosslg summarize the advantages and disadvantages of
College of Beer-Sheva, School of Engineering, Beer-Sheva, Israel. these methods. An adiabatic hyperspherical treatment was
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suggested by Solovié¥and Macelké!??> Hyperspherical co- &
ordinates have been shown to be a natural system of coordi-
nates to describe molecular problems and yet incorporate the
asymptotic motion of the electrons with the nuclei. However,
since the resulting differential equations are complicated, it
has been used primarily within the adiabatic approximation.
Moreover, the overwhelming majority of molecular structure
calculations are carried out using an adiabatic BO approach, r, r, |
and a tremendous investment into computer codes exists us- C
ing these methods. Hence, it is important to determine the
corrections necessary to the BO basis in order to incorporate
the electronic motion with the nuclei asymptotically, and A
characterize the results obtained with these corrections by
comparing the results with high precision spectroscopic data.
A theory for including the motion of electrons with the R% RO cun\R%em R,
nuclei was developed by Delos, Thorson and othérsS.A
related method has been suggested by Gtédame basic
idea behind these methods is the use of a generalized scat-
tering coordinate which is a function of both the nuclear
coordinate and the electronic coordinate in a quantum-
mechanical framework. To the best of our knowledge, such 0
methods were never applied to calculate high accuracy
bound-state energies of the hydrogen molecular ion nor an§/|G' 1 _Coordingtes for the one-electron—two nuclei s_ysl@rhs an _exter-
other spectroscopic data for other molecular systems. nal origin. CMN is the center of mass of the two nuddeandB. CM is the

. o Déé center of mass of the whole systef'g.is a vector from the geometric center
In this paper, we have modified the approach of los of the nuclei to the electron. It is assumed thMat> Mg .

to formulate a theory that can be applied to calculate bound-

state energies of both the ground and excited states of the < _ =
- Ve=Valr.. (€)

molecular hydrogen ion. Here we present our results for 9

HD* and compare with experimentally determined transition  The total Hamiltonian for the two nuclei and one elec-

energies. The adiabatic BOBS theory of the three-body prohron, after subtracting off the center of mass contribution, can
lem is reviewed in Sec. Il. In Sec. Ill, the modified BOBS pe written in atomic units as

theory (MBOBS) is presented. Results and discussion are 1 1 A 2 1 1 1
resented in Sec. V, and conclusions are drawn in Sec. VI. =— V2 VooV, | +=————.
P H 2mVg ZM(VR 2Vg R ra rp @
Il. BORN-OPPENHEIMER BASIS FORMULATION OF The masses are defined by
THE THREE-BODY PROBLEM MaMg
“ Mat Mg
A. Statement of the problem A B
1 1 1 '

Consider the system described in Fig. 1. HArand B -4 -
are nuclei with mass, and Mg (in what follows we as- m me MatMg

sumeM 4= Mpg), andR is the nuclear coordinate going from wherem, is the mass of the electron, and(i =A,B) is the

A to B. The electronic coordinate can be chosenF@s distance between the nucleusnd the electron. The Schro-
which connects the geometric center of the nuclei with thedinger equation takes the form

electr-on,. orr, which connects the cgntfr of Enass of the two HW (7, R)= EW (7, R), (5)
nuclei with the electron. The vectoR r andr are related ) ) ] ]
via the expression and the wave functiol can be expanded in an adiabatic BO
N basis set of electronic wave functions,
Fg=F— = R. (1) - . .
°2 W(ig,RI=2 ey RIFUR), ()

HereN=(Maz—Mg)/(M 4+ M3) is the mass asymmetry fac-
tor (note that =\ <1 sinceM,=Mp).2° Accordingly, the
gradient with respect to the nuclear coordinBés related
using Eq.(1),

where {¢\(ry,R)} are the electronic wave functions and

{Fk(ﬁ)} are the nuclear wave functions.
The electronic Hamiltonian is given by

1,11 1
h=——Vi—|—+ —
2 2m 9

CET|TTHV. )

.

Vr

L AL
=Verlr,= 5V

9

g o
) R _ The set of adiabatic BO functiode(ry,R)} are eigenfunc-
where V, means a gradient with respect fg holding R tions of the electronic Hamiltonian, and obey the eigenvalue

fixed. For simplicity of notation, we define equation
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he(fg,R)=e(R)y(rg,R). (8)
Inserting Eq.(6) into the Schrodinger equation, multiplying

on the left by an electronic function and integrating over all

I. Tuvi and Y. B. Band

HereB? is the Hermitian matrix,

~ d
0_Rpo_ | _—_p(R
B*=B (dRP .

(14)

electronic coordinates, results in a set of coupled differentiadne derivative with respect tR in the second term on the

equations for the nuclear wave functiét R)

(——[w +2P(R)-Vg+B2%(R)]+ U(R )]F(FE)

=EF(R). 9)

Here P and B are the first and second derivative coupling

matrices given by

F‘kfk<R>=f nggok«r*g,R)(v*R— —ﬁg)mr*g,m (10)

and

>

N 2
Ve=5V ) ¢(rg,R).
11
The potential energy matrixXJ is given by: Uy (R)
=(ex(R) + (1/R)) Sy/ - The solution of Eq(9) is performed

in two steps. First, Eq(8) is solved to get the basis set
functions{¢,} and the potential energies as a function of

BE,k(R)=J ngsok«Fg,R)(

right-hand side of Eq(14) operates only orP® and no
further. For more details, see Appendix A.

B. Problems associated with the Born-Oppenheimer
basis set

The main problem with the BOBS theory when applied
to the molecular hydrogen ion is that individual terms in the
expansion[Eq (6)] do not satisfy the scattering boundary
conditions*® Since the sum over states is truncated in prac-
tice, the result is that the total wave function does not obey
standard scattering boundary conditions as well. Asymptoti-
cally, the picture changes from a molecular picture to an
atomic picture wherein the electron moves with one of the
nuclei. However, the BO basis set functions are molecular in
nature. They are therefore unable to describe the correct
physics asymptotically. As a consequence, several difficul-
ties appear which are evident upon calculations of the matrix

elements of the first derivative coupling matfx

internuclear coordinate. This is done by transforming the(1) The first derivative coupling matri®, does not vanish

problem into prolate spheroidal coordinates in which the
electronic Hamiltonian is separalfféln the second step, Eq.
(9) is converted to a radial equation by transformation to a
rotating coordinate system, and expansion of the wave func-
tion in symmetric-top eigenfunctions followed by integration

asymptoticallyasR—co. This is because in the calcula-

tion of matrix elements oﬁR, the electronic coordinate
is held fixed with respect to the geometric center of the
nuclei rather than with respect to either nucleus. A cal-

culation of these terms shows that Bs-, P, (R)

over the angular coordinates, as explained, e.g.,
and 28. The resulting nuclear wave functiB(R) is a func-

tion of the magnitude of the nuclear coordinate only. The
radial equation is then solved to obtain the bound-state ener-
more details see

gies and the wave function. For

Appendix A.

The differential equation for the nuclear wave function

Gﬂ,,J and the eigenenerdy is given by
1 d?>  J(J+1)—2A? d
S Y el (R)_—_ 1 RO, NO|RJ
7 1(dR2 R? +2P dR+B +D G,\,IJ
=(1E-U)G; J (12)

whereP® is the radial part of the first derivative coupling
termP, D° is the coupling matrix originating from the angu-
lar terms of the nuclear kinetic energy operatefvﬁlzu
which are off-diagonal in the magnetic quantum numher

in Refs. 27

—const which is not necessarily zero. Physically, this
represents the motion of the atomic orbitals relative to
the center of mass of the nuclei & changes. These
findings do not allow a scattering theory to be formu-
lated, since boundary conditions are not obeyed.

The first derivative coupling ter® also contains ficti-
tious “origin dependent” couplings.This is evident
when one calculates the matrix between states with
different parity @,u) and are again a result of the inap-
propriate formulation of the theory. This is particularly
important in the ground state manifold of HDwhere
the only contribution to the matrik is fictitious. Calcu-
lations of theP matrix show a non-negligible contribu-
tion between the states&y and 20, whose order of
magnitude is much too large. These contributions are
eliminated in the corrected theory described below.

)

and the matrixB® has been defined above. The sum of the

nonadiabatic coupling terms appearing in E®) is Hermit-
ian, although neitheP nor B are Hermitian. Equatio12)
can be written in an explicitly Hermitian form as follows:

J(J+1)—2A%
R?

d2
"2 1(FR2‘

+ P(R)i+ diP<R>+ BO+D°

dR GJ

=[1E—U]G,J\,|J (13

The common source of the above problems is the lack of
a proper formulation of the asymptotic coupling between the
electronic motion and the nuclei motion within the quantum
theory. Semiclassically, this coupling is represented by elec-
tron translation factoréETFS. An ETF on nucleud is de-
scribed by

. oL

FA(r,t)zex;{g(va-r— imvit)|, (15)
wherev , is the velocity of nucleug, andr is the electronic
coordinate. The ETF represents the momentum and kinetic
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energy of the electron as it rides on nucleusor B. The €

electronic wave function for the electron around nucléus r

can be defined as B
(16) CMA R,

N - R i
i a(r 1) =Fa(r at)‘Pk,A(rA)eXF{ 7 €k, Al

Here ¢y A(Fa) is an ordinary atomic orbital for ator, and

€ A IS its energy. To elaborate on this point, we note that the
coupling matrix P represents the total change of the basis
functions with respect to the nuclear coordinBteThe effect

of the coupling matrix® can be divided into two parts,

(1) Rotation, distortion, polarization and change of character
of the basis set functions witR.
(2) Motion of the electron along with the atomic nuclei.

The first part is responsible for nonadiabatic transitions.

Couplings originating from the second part are not physical, r

as was shown by DeldsIncluding the effect of ETFs in a ’ B
quantum theory cancels the fictitious couplings that would

otherwise be present. However, quantum mechanically, it is MN

not clear how to define ETFs since they involve the velocity A

of one of the nuclei, and thus become ambiguous in the

molecular adiabatic BO basis. Steps to overcome this prob;IG. 2. Three Jacobi coordinate systems for relative coordinates of two
lem have been taken by Thorson and Délasd Davis and heavy particle\, B, and an electroe™ for the case whert1,>Mg .
Thorson? Delog' generalized those methods to the quantum

case and developed a theory in which the effect of thgering coordinate must be able to smoothly transform from
asymptotic motion of the electrons with the nuclei is in-yhe molecular picture withR as the scattering coordinate to

cl_uded n a _quantum-m_echanlcal fa_shlon. Th_e main |_dea_ ®the atomic situation at dissociation describedryor Rg as
his method is a generalized scattering coordinate which is ﬁ1e scattering coordinatsee Fig. 2 One should expect that
function of both the nuclear coordinate and the electroniq[he scattering coordinate will .be a function of both the

coordinate. In this theory, called the modified Born- s o ) o

Oppenheimer basis s@BOB) method, all of the problems nuclear coordinat® and the electronic coordinatg . Fol-
Jowing Delos? we thus define the scattering coordinate to be
~

listed above are eliminated. The generalized scattering coo .
dinate is constructed using a switching function that deR(Fg,ﬁ). In general, the coordinatdR can be state-

scribes an electron translation which is a function of the elecdependent. A complete treatment with a state-dependent
tron’s local behavior. As a consequence, the scatteringcattering coordinate can be found in Ref. 28. In the calcu-

coordinate switches between the nuclear coordirRitat lations we present here, we have takgw as state-

short range and the atomic coordin&®ge(i=A,B) at long  independent. The BOBS expansion of the total wave func-
range. Davis and Thorson tested their theory on resonantion is then replaced by the ansatz:

near-resonant charge exchange collision probf&now- -

ever, application of these methods was not performed in the \If(Fg ,§)=2 g?ak(Fg ,ﬁ)Fk(R). 17)
context of bound-state energies of the hydrogen molecular K

ion nor any other molecular system. The details of thisif the basis set functionp,} are of atomic charactdi.e.,

method are described in the next section. single-center functionghen one may replad~é by ﬁA (ﬁB)

or a constant timeﬁaeA (ﬁB). But, if the basis set functions
Ill. THE MODIFIED BORN-OPPENHEIMER BASIS SET
FORMULATION

A. The basic ansatz

~
are of molecular charactétwo-center functionsthenR be-
comes a curvilinear coordinate.

B. Derivati f th led ti
As described above, individual terms in the BOBS ex- erivation ot the coupled equations

pansion for the total wave function do not satisfy standard A complete derivation of the coupled equations resulting
scattering boundary conditions. The main reason is the fadtom Eq. (17) is presented in the review article by Delfbs.
that asymptotically, the electron is bound to one of the nucleHere we survey the main results. The heavy-particle coordi-
and thus, upon dissociation, the system is best described Itate is chosen to be

terms of atomic coordinates. There are three different Jacobi . . m )

sets of coordinates which can be used to describe the one- R(ry,R)=R+ —5(fy,R), (19
electron two-nuclei system at different stages of the scatter- K

ing process. These are illustrated in Fig. 2. A realistic scatwhere
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o1 .1 R therefore designate it by the numerical vaRe Using the
s=5(f+Mrg— §(1—>\2)R- (19 Hamiltonian given in Eq(20), a new set of coupled equa-
tions results,
f=f(Fg,R) is a switching function which is antisymmetric 1 y e .
with respect to electronic coordinafg, and goes asymptoti- [ - ﬁ[lVR—i_ 2I1-Vp+B]+U+1— 15) F(R)=0, (23

cally asR— to =1. Asymptotically, R=\(ui/u)Ri (i \hereU is as before, and the coupling matrices are given by
=A,B), u; being the nuclear reduced mass in channel
1 &aba>

Pk

e.g.,ua=(Mg+Ma)Mg/(Mg+Mu+Msg). The main reason (
this particular choice of scattering coordinate is chosen Hk'k:f ng@?k/ D%+ — b
comes from the fact that using this form in a classical theory 2 or
has resolved many of the problems of the BOBS théory. .
However, the switching function is yet to be determined. { Bk'k:J drgp DDy, (24)
The next step is to map the original BO basis set

{cpk(Fg,R)} by using new coordinates so as to create the
basis{ (I ,R)}. The final step is to express the Hamil-
tonian in Eq.(4) in terms of the new set of coordinates. As a \
result, the Hamiltonian can be expanded in powers ofC. Interpretation of coupling terms

M/ L=~V nyclead Velectronic: SiNCe the collisions considered are 1. The potential energy matrix U
slow, one can assume that the nuclear velocity is much  The potential energy matril(R) is given by matrix
smaller than the typical electronic velocity, so that terms ofglements of the operatbrplus the factor of R exactly as in
order (m/u)*? (~10"° for H;) and higher powers can be the BOBS theory. The electronic Hamiltonian that should be
consistently neglected. In addition, terms of ordefu  ygsed to define the potential energy matrix in E2@) is h’,

which are also proportional to derivatives of the switchingyhich is the operator defined in E¢21). However, it is
function or related factore.g., f?—1)] can also be ne- convenient to expreds’ in the form

glected. The matrix elements of the new Hamiltonian are

given by(the coordinate, rather tharr, is used for the sake , a1 , oo 1
- : 9 : h’=h+—+|h"—h——

of consistency with Ref. 4; the transformation between the B =}

two coordinates is performed later)on

.1
h'—h-=
R

lk’k:f ng(,’bkr (’,\Dk.

=h+ é +1. (25)

R
The electron reduced mass mattixdefined by the above
equation will be discussed below. The electronic Hamil-
tonian operatoh bears the same relationship to the BO elec-
tronic Hamiltonianh that &,(r,R) bears tog,(r,R). Ex-
pressed in terms of (R), h has the same functional form as

1 B - B = doesh expressed in terms of (R). In other wordsh can be
—2—2 [( & (F,R)F (R)|D2D?| 4 (F, R)F(R)) thought of as a “mapping” of the BO electronic Hamil-
Mk k tonian to the new coordinates. We thus have

(W|H(F R)|w)

= (2 (FRF (RN |2 FRIFLR))
k' k

(10 (FRIF (RN 222 3r°D3 (7, RIF(R)) , o
(20) Uk’k_J' dr(Pk/(r,R)

A
h+:> e(rR)
R

with 1
) . ) =fdfg¢k,(Fg,R) h+5)¢k(rg,R)
r—_ _— | papna_ _ ,ba_ca,bn.cC _
h om p?p Ma a®?p°p¢|+V+ R’ (21 .
and D?= P2+ o3P, where a,b represent the directions - 8k+§ Ok (26)

T,j,R and the summation over common indices is implicit.

Here we used the definitions The last equality is obtained provided the basis set functions

are eigenstates of the electronic Hamiltonian. Moreover, the

R ~ R electronic wave functions are orthogonal, i.e.,
pP=(alarP)r; PP=(aldR");;  a®P=(ds"ar®r. (22) g

Note thatP is a derivative with respect &8 holding fixed, Sk’k:f drow (r,R)ew(r,R)

not ry, so care must be taken before comparison with the

results of the BOBS metho(in WhICh all derlv_atlves WIFh :f dfgei (Fg . R ol(Fg,R)= Sy (27)
respect to the scattering coordinate were derived holdéng

fixed) can be performed. Since the new electronic Hamiltonidnis practically equal

For the purpose of numerical integration over electronicio the BO electronic Hamiltonian, the caret is omitted in Eg.
coordinates,R is a dummy integration variable. We can (23) and in what follows.
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2. The corrected first derivative coupling matrix IT Here the last line results from the difference between the
1 9aP? N potential energy written in terms of {,R) and in terms of
P+ a5 — 5 | $i(TR) (Fg.R).
Equation(23) involves three nuclear dimensions. It can

ﬁk’k: f dF(’,\Dkr(F,ﬁ)

B . R D - be reduced to a one dimensional radial equation in a fashion
= | drgew(rg,R)| Ve 5 Vg|eu(rg,R) similar to that used in the original BOBS theory — by ex-
pansion in symmetric-top eigenfunctions.
—mf dfgew (T, RI[N.Slew(rg.R) D. The radial equation
_ lsk/k+5~k'k- (28) In deriving the radial equation, the same expansion as in

N the BOBS theory{Eq. (A2)] was used. Clearly, the same
The first term P) is the original first derivative coupling symmetry restrictions regarding the magnetic quantum num-
matrix appearing in the BOBS theory. The second teAp ( ber A appear here as well. The resulting equation is very
is the correction matrix which cancels the fictitious couplingssimilar to Eq.(12) except for the addition of the matrik

originating from the first derivative coupling matrix with ~ and is given by

II playing the role the matri® plays in the BOBS theory, d?2  JJ+1)—2A?
. . . E1G, =— —1| — —— |G

standard scattering boundary conditions are obtained. In the M, 2| dR? R2 M)
case of the state-dependent scattering coordinate, another

. > O 428 T : oy 1 d
matrix calledy must be added tdI."<° This matrix origi _ _[ZH(R)_+B+D_2M(| +h) Gﬁ,l _
nates from momentum transfer factors. However, when the 2u dR J
scattering coordinate is state-independent, this matrix van- (31)

ishes identically. R
HereII'® means the radial part of the matik, B is diag-

3. The corrected second derivative coupling matrix B onal in A, D is a matrix representing the off-diagonal in

Using the definition in Eq(24), we have coupling terms originating from the angular part of the ma-
B I PP U trix I and the angular part of the nuclear kinetic energy
Buk= | dréw (r,R)(P+a™p?)"y(r,R) operator— V2/2u. All of these matrix elements are specified

) in detail in Appendix B.

I
VR+ Evg

%f ng(Pk’(Fg ,R)

The last line of Eq(29) is an approximation, since deriva- The issue of hermiticity requires special attention since
tives of the switching functiorf have been neglected. This the discrete variable representati@VR) method(used to
approximation is fully justified asymptotically, since the find the eigenenergies and eigenfunctions of the nuclear
switching function goes to a constant there. This approximaHamiltonian) can lead to significant numerical errors if the
tion simplifies the calculations significantly. Hamiltonian matrix is not written in an explicitly Hermitian
. form.2° Therefore, each coupling matrix should be examined
4. The electron reduced mass matrix, | . . .
i ) ) carefully. Since all operators and basis set functions are real,

The matrix| contains corrections related to the reduced,ng ghould require that the nuclear Hamiltonian will be sym-
mass of the electron. In the molecular BO basis set descrifgetric with respect to interchanging basis set indices.
tion, the reduced electronic mass ta_ken into accdumt We start by writing the radial Eq31) as follows:
=Mg(Mpa+Mpg)/(Me+Mpa+Mpg)] is different from the

¢k(r9 R). (29 E. Hermitian formulas for the matrix elements

X . . . 2
atomic reduced electronic mass appearing in the channels: ; L fd 1 PPN P
m,=mM;/(m.+M;), i=A,B. The matrixl is proportional E1Gy,= 2,u1 dR? RZ(J(JH) 2A%) |G,
to the difference between these reduced masses. In other

. i S . 1 d d

words, since the new first and second derivative coupling - R =+ —q®
terms are made to vanish asymptotically, the remaining cou- 2u dR dR
pling terms originating from small mass differences need to
be taken into account separately. This is the source of the +B+ D—2u(l+h) G;\]A . (32
matrix which takes the form ’

1 Here B=B— ((d/dR)II(?), where the derivative operates
Imf digy (F,R)| h'—h——|&(T,R) onI® only.
R The radial part of the first derivative coupling matiik

1 must be antisymmetric because it multiplies the operator
~ _f ng‘Pk’(FguR)[(f+)\)VS]@k(Fg R) d/dRWhICh is a_nt|symmetr|c. From E¢B1) one can easily
2u see that this is indeed the case.
The second derivative matrB need not be Hermitian in
general. Nevertheless, in analogy with the BOBS theory, we

e(rg,R). (30 . = e o
expect to find the matriB Hermitian. The expression given

m - - . 1
—— | drgew(rg,R)s-Vg| V+ —
)7 R
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in Appendix B proves this assumption. In practice, however(2) Calculating the coupling matrix elements necessary to

a derivation of a formula for£ (1/2u)B+1) is simpler than construct the Hamiltonian matrix of the Hermitian
deriving B and| separately® The resulting formula is Her- nuclear radial equatiofEq. (32)].
mitian per definition, and is given bsee Appendix C for (3) Solving the nuclear radial eigenstate problem, &),
detail9 by means of a specially designed discrete variable rep-
resentationDVR) method.
_ﬂBk'ka’k The methods used for the calculations are described
below.
1., mi ., . 2\ ® .
=- ﬂ KK Z g te— R Skk A. Computational methods

1. Solution of the electronic problem
The electronic wave equation is given by
h? 1

Ve ! (fg.R)
— A — = = |elg,
2m 9 |ry|  |rgl ’

m R P R
_ﬂ(sk_gk')<k’A|S'(VR_E)\Vg>|k/\>
he(ry,R)=

m 1 ) L
_ﬂ(&‘k_&‘kr)(k A|<VR—E)\V9 -S|kA). (33

Is(R)go(Fg,R). (34
Here again, integration is over the prolate spheroidal coordif, pojate spheroidal coordinates this equation is separable,
nates, 7 andy. Within the 1soy and oo, manifold of H obtaining®

states(states are designated by the united atom limit quan-
tum numbery the off-diagonal elements of the second term
on the right-hand side of E¢33) vanish because of symme-
try. This is because the radial part of the vector s is symmet-
ric with respect to the prolate electronic coordinatewhile

2

A2z =0
-(9)(2 (X)_ ’

d d A?
<§2—1)—+A——+2R§—p2§2}X<§,R)=o,

- —
the electronic wave functions ofstry and 2o, are sym- L9¢ 43 &-1

metric and antisymmetric with respect tg respectively. [ 9 5 0 A? )

Therefore the integrand is antisymmetric, while the integra- %(1— n )%—A— m*‘p 7°|Y(7,R)=0, (39

tion boundaries are symmetric and the integral vanishes. The ) 5 )
third and fourth terms on the right-hand side of Bg3)  Wherep“(R)=—(R%2)¢(R), and the electronic wave func-

vanish asymptotically since the energies of the ground statdon takes the product form

manifold are degenerate asymptotically. In the ground state cp(Fg,R)=N(R)X(g,R)Y(n,R)Z(X). (36)
manifold of HD" it is therefore possible to estimate the off-
diagonal elements of the matrix— (1/2u) By + k] as-
sumin_g_sﬁsk, at any_ po?nt inR. The reglélt is the BOBS ZLJ' dXJ L 37)
Hermitian second derivative term (1/2u)B,,, . ™

The matrixD as defined by EqB7) is also Hermitian, with the volume element given by
since the original BOB®° matrix is Hermitian. 7R3

To summarize, as in the BOBS theory, we are able to  dr=——(&2— 5?)déd . (39
formulate the radial Schrodinger equation in an explicitly 4
Hermitian form. It should be noted that using a state-The solution of the first equation if35) gives Z(x)
dependent scattering coordinatby means of a state- =exgdiAy]. Several methods have been developed through
dependent switching functignhermiticity of the resulting the years which can treat these kinds of differential equations
coupling matrices and the total Hamiltonian can not bein which the separation constafitand the energy constapt
assured?® are R dependent, e.g., Refs. 26, 27, and 30—32. We used a

computer program written by Hadinger and co-workers. This
program is based on the Killingbeck method associated with
IV. NUMERICAL CALCULATIONS OF VIBRONIC Miller's algorithm32=3% According to the method of Had-
ENERGIES inger and co-workers, the functiod¢,R) andY(#,R) are
~ expanded in a suitable power seri¢there are several

The MBOBS method was used to calculate vibration-,ssipilities—see Ref. 320btaining recursion relations for
rotation energies of the hydrogen molecular ion and its isotye coefficients and solving them according to the Hill deter-
topic variantsH; , HD", D;). The calculations were carried minant method® This method also allows accurate calcula-

out in several steps: tions of the first and second derivatives of the electronic

(1) Solving the electronic wave equation for the electronicWave function with respect to the nuclear coordinate. Hyller-
eigenenergies and the electronic wave functions. Thé&as functions are used to expand the funci¢g,R),
eigenenergies are used to construct the potentiql energy  X(¢,R)=(&2-1)Mexd —p(é-1)]
curves for the nuclear problem, and the electronic wave
functions are used as a basis set with which one expands A

X 2, CiLy,:(2p(é—1)). 39
the total wave function as in E@l7). Jzo Las(2p(e—1)) 39

HereN(R) is the normalization constant such that
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The functionY(#,R) is expanded using Baber and Hasse

functions, 8 —1Isc
5] 7 g
<o —--2pG,
A = g — 250,
Y(nR)=exd —pnl 2 aPi(n). (40 EEC0OR T 350
:Z o
I "2dG,
Here PlA(n) are associated Legendre polynomials. Using A jj_‘_‘jﬁgf

this method we were able to obtain electronic wave functions

and potential energy surfaces with accuracy of 11 to 15 sig-
nificant digits. R [Bohr]
In the next step, all the coupling matrix elements that
appear in Eq(32) were separated into integrals ovetimes
integrals ovem. The expansions of the electronic wave func-
tions X(¢,R) andY(#n,R) were used to calculate the various

@ntegrals _semianalyfcically. F_or integrals involving the SV_VitCh'various matrix elements resulting from applying the BOBS
ing functions, the integration was performed numerically.theory. Their results, although correct mathematically, did
When possible, the integrals were tested using identitiegot incorporate the correct physics associated with the mo-
specified in Ref. 28, and accuracy of 9 to 14 significant digitSjon of the electron with the nuclei asymptotically. A few

FIG. 3. Potential energy curves ofHand its isotopic variants for various
states. United atom limit quantum numbers are used to designate states.

was obtained. years later, they performed some modifications to the BOBS
theory® however, their generalized model did not solve all
2. The choice of the switching function the problems arising from the BOBS theory, and was not

The switching function was determined using the @pplied to the calculations of bound-state energies of mo-
method of Thorson and co-worke¥s3® This method allows 'e€cular hydrogen ion. Since then, various methods have been

for both state-independent and state-dependent SWitchir@eveloped to calculate vibronic energies of the ground state

+ 18,19 H
functions. In our calculations, we found implementation of®f Hz ,™ "~ but none of these methods was used to determine

the state-dependent switching function to be problenftic; COrrect nonadiabatic matrix elements. Moreover, some of
hence we used the parametéR) that was optimized for the the;e methods are ba_se_d on tran_sformatlons of _the Han_ul-
ground state. An analytic functiorf( »,R)=tanib(R)R5],  tonian such that the 0r|g_|ngl meaning of the coup_llng matri-
was chosen for the switching function, whérés a function ~ Ces is lost® Therefore, it is important to determine these
of the internuclear distancR®. The switching functiorf is matrix elements and understand their behavior as a function
independent of andy. The specific choice of the parameter Of internuclear distance. Figure 3 presents the potential en-
b(R) was made by an optimization procedure that signifi-€rgy surfaces of bl and its isotopic_ variants, for states with
cantly reduced the magnitude of the corrected coupling maduantum numbera=1...4, A=0. Figure 4 presents several
trices of the ground state to higher lying states as compare@‘at”f elements of the radial part of the first derivative ma-
with the BOBS coupling matrice(R) was determined em- trix II for HD*. One important thing to note here is that at
pirically on a grid of points irR, and was then interpolated large internuclear separation, all matrix elements vanish. Fig-

to obtain its value for any giveR. ure 5 presents the BOBS resUitse radial part of the matrix
P, Eq.(A7)], for the same matrix elements presented in Fig.
3. Diagonalization of the Hamiltonian 4. In addition, Fig. 6 shows BOBS results of the radial part

The radial equation resulting from the coupled equation®! the matrix P, that couple gerade and ungerade states.
[Eq. (32)] was solved using a Fourier grid Hamiltonian- These matnx elements vanish |d§nt|cally in the corrept
discrete variable representatidfGH-DVR) method® 4! theory. Figure 7 preﬂsents jew matrix elements of the radial
For the purpose of these Ca]cu]ationS, the method was ge@.arts of the matriceBl andP. The main difference between
eralized to treat first derivative coupling terms. Furthermorethe BOBS results and the MBOBS resullts is the asymptotic
the method was formulated in a manner that is exp||c|t|y||m|t of the matrix elements, as is evident from Flg 7. In
Hermitian and that does not involve products of operator@ddition, the matrix elements ¢1® are smaller in magni-
that are difficult to evaluate analytically. The issue of hermi-tude as compared with the matrix elementsPdP. These
ticity is crucial for these sort of calculatioR$Ignoring this
issue can result in significant numerical problems. A nonlin-

ear grid in the scattering coordinate was u&eih order to 0.2
. . . iy \ L
sample long range potentials with higher accuracy. ; R R g N®(1s6,250,)
A'i \.‘\ [ H(R)(lscg,3sog)
V. RESULTS AND DISCUSSION - M isog3doy
< | --- 11 (lscg,4dcg)
A. Calculations of the coupling matrices o1

About 20 years ago, Ponomarev and co-workers pub- 1020 30 40
lished a series of papers on the use of BO basis functions to R [Bohr]
calculate nonadiabatic matrix elements of the three-body|g. 4. Matrix elements of the MBOBS radial first derivative matrix calcu-

problem?=%3In the third paper they presented figures of thelated for HD'.
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0.3 L L L 0.2 . . \
] E F ~
5 0.2 ® £ 014 L -=- B"(s0,, 250,)
=, \ | - P(R)(lscg ,256,) 5 = =B(Isq,, 3s0,)
2014 - PER;(lscngcg) L. 0.04- — B-(Iso, , 3do,)
%" I iP(R)(lscg »3dgy) = e B 50, , 25G,)
0.01 | P (Lsay, 4doy) b o-0.1d T — L --- B(sc, , 3s0,)
—B(Isc,, 3do,)
-0.1 ' ' ' 0.2
10 20 30 40 ) é 1'0 1'5 20
R [Bohr] R [Bohr]
FIG. 5. Matrix elements of the BOBS radial first derivative matrix calcu- FIG. 10. Comparison between matrix elements of the BOBS second deriva-
lated for HD'. tive matrix and the MBOBS second derivative matrix for HOor various
o4 states.
0.1
—_ Pii:(lscg,‘tpcu) results suggest that convergence with respect to the basis set
3 _P(R)(lscg’3l’0u) size can be much faster in the MBOBS method. Various
-—P®2ps,, 3do : 1™
Qi 0.0-&\_;.. _P(R)EISG“ 2pcf)) matrix elements of the matriB [Eq. (B5)] are plotted as a
- — __,,P(R)Gpcg’ 3do,) function of internuclear distance in Fig. 8. As expected, as-
[™, /s u> . . .
| PR(4pa, 3do§) ymptotically, all matrix elements vanish. The result of the
-0.1 ’

BOBS theory for the second derivative coupling matrix are
presented in Fig. 9. A comparison with the second derivative
matrix B° of the BOBS theonfEq. (A10)] is given in Fig.

FIG. 6. Matrix elements of the BOBS radial first derivative matrix forHD  10. Qur calculations show that the coupling matrix elements

10 20 30 40
R [Bohr]

for various gerade-ungerade states. of the matrices discussed above for states other than the
ground state behave similarly, and are therefore not shown
_ here.
31 - P15, 355,) Calculations of the off-diagonal elements of the.electro'n
= | P®1s6,, 250, reduced mass matrik are cumbersome, and require addi
E TP isa,, 3doy) tional effort. The diagonal elements of the matiixare
;% _g(R)ﬁzzizi‘;g; shown in Fig. 11.
=3 = -11®(sq,, 350,)
0.1 T " " " B. Calculations of transition energies for HD  *
R [Bohr] Of all isotopic equivalents of i, HD" is the one which

experimentalists study mo¥tHence, we focus our reported
Tesults on the HD transition energies for which experimen-
tal measurements exist. Convergence as a function of the
DVR parameters was examined. The integration region was
Re[0.5,100 Bohr, and 150 grid points were used with a

FIG. 7. Comparison between matrix elements of the BOBS radial first de
rivative matrix and the MBOBS radial first derivative matrix for FiDfor
various oy states.

n 0.05 nonlinear grid. With these parameters, the resulting bound
E 000) e | B(Is0,, 250,) sFaFes are believed to be accurate to at least nine S|gn|f|gant
% , B~(1soz,3scgg) digits. Table | presents results of Born-Oppenheimer, adia-
f; 005y b B (150, , 4dG,) batic and two-state nonadiabatic calculation of the transition
—B7(Isc , 3doy) frequencies of HD and their comparison to experimental
-0.10 values. The BO results refer to the electronic Hamiltonian:

50 10 15 20 .
R [Bohi] ho= —(1/2me)V§+V, wherem,, the electron mass, is taken
as unity. The two-state nonadiabatic calculation was per-

FIG. 8. Matrix elements of the MBOBS second derivative matrix calculatedformed within the ground state manifold of HD meaning

for HD™.

0.2 : : - 0.1 : : :
T oo/ >~ 3
0.11 /.- - 2
g A R B B=(1s0, , 256,) = —I(Isc,, 156,)
= 00 T Boisc 3509 T, - 1250, 2503)
v L-—- R % | - 1(3504, 350,)
T o T T T | —B7(Is0y, 3doy) ek A e I(3do, , 3do,)
o] e 13"0(150g , 4doy,) —I(4doy, 4doy)
0.2 . : : , ,
5 10 15 20 10 15 20
R [Bohr] R [Bohr]

FIG. 9. Matrix elements of the BOBS second derivative matrix calculatedFIG. 11. Diagonal matrix elements of the reduced electronic mass matrix for
for HD*. HD™ for variouso states.
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TABLE |. BO, adiabatic, nonadiabatic two-state, radiatively and relativisitically corrected nonadiabatic two-
state and experimental transition frequencies of "HiB cm™%. Percent difference refers to the difference
between the radiatively and relativisitically corrected two-state nonadiabatic calculations and experimental
values. Experimental values are taken from Ref. 16.

Transition BO Adiabatic Two-state  Corrected two-state  Experiment % difference
1-0R1) 1869.7222 1869.1685 1869.1683 1869.2044 1869.1340 0.0038
1-0R2) 1824.1013 1823.5666 1823.5664 1823.5453 1823.5330 0.0007
1-0R3) 1777.0063 1776.4916 1776.4914 1776.4717 1776.4590 0.0007
2-1R(0) 1857.3311 1856.8028  1856.8025 1856.7798 1856.7780 0.0001
3-2R0) 1762.0999 1761.6312 1761.6309 1761.6106 1761.6160 0.0003
3-2R(1) 1798.0181 1797.5370  1797.5366 1797.5153 1797.5220 0.0004
3-2R(2) 1831.5890 1831.0970  1831.0967 1831.0744 1831.0830 0.0005
3-2R2) 1642.5451 16421220 1642.1217 1642.1047 1642.1080 0.0002

17-14R0) 1812.5097 1813.8616 1813.8194 1813.8401 1813.8520 0.0007
17-14R1) 1818.8475 1820.2173  1820.1737 1820.1947 1820.2090 0.0008
17-14R2) 1818.8154 1820.2107 1820.1651 1820.1865 1820.1990 0.0007
17-14R3) 1812.2306 1813.6596 1813.6110 1813.6333 1813.6440 0.0006
17-14R4) 1798.9062  1800.3775  1800.3249 1800.3484 1800.3580 0.0005
17-14R5) 1778.6472 1780.1698  1780.1118 1780.1368 1780.1450 0.0005
17-14R1) 1781.4424 1782.7810 1782.7397 1782.7606 1782.7720 0.0006
17-15R7) 1077.6606 1078.8992  1078.8337 1078.8557 1078.8530 0.0003
17-15R1)  1091.1578 1092.1390  1092.1051 1092.1212 1092.1240 0.0003
17-15R2) 1070.5964 1071.5774 1071.5432 1071.5598 1071.5610 0.0001
17-15R3) 1046.2704  1047.2562  1047.2211 1047.2382 1047.2390 0.0001
17-15R5)  986.9302  987.9402  987.9014 987.9198 987.9170 0.0003
17-15R6)  952.1780  953.2075  953.1657 953.1851 953.1800 0.0005
18-16R0)  925.3510  926.5513  926.4805 926.5012 926.4900 0.0012
18-16R1)  931.0682  932.2883  932.2141 932.2351 932.2240 0.0012
18-16R2)  932.0357  933.2822  933.2027 933.2242 933.2130 0.0012
18-16R3)  928.0434  929.3232  929.2362 929.2586 929.2470 0.0012
18-16R4)  918.8643  920.1852  920.0873 920.1107 920.1000 0.0012
18-16R5)  904.2475  905.6179  905.5046 905.5293 905.5190 0.0011
18-16R6)  883.9049  885.3348  885.1985 885.2248 885.2180 0.0008
18-16R1)  900.4452  901.6245  901.5558 901.5766 901.5650 0.0013
18-16R2)  881.6168  882.7943  882.724 882.7454 882.7310 0.0016
19-16R6) 10352059 1037.2543  983.6407 1036.9731 1036.9610 0.0012
19-16R7)  981.9418  984.0473  1036.9335 983.6823 983.6930 0.0011
20-17R0)  916.6325  918.9213  918.1018 918.1436 918.1020 0.0045
20-17R1)  914.0502  916.3737  915.4529 915.4955 915.4760 0.0021
20-17R2)  903.4980  905.8698  904.7563 904.8000 904.8330 0.0036
20-17R3)  884.5929  887.0288  885.5384 885.5838 885.7490 0.0186
20-17R1)  899.0152  901.2715  900.4973 900.5387 900.4880 0.0056
20-17R2)  879.2274  881.4851  880.6678 880.7095 880.6680 0.0047
21-17R0)  1003.7145 1006.8727  998.2631 998.3238 998.5330 0.0209
21-17R1)  995.2344  998.4298  988.0571 088.1186 988.9930 0.0884
21-17R2)  975.6874  978.9352  965.7496 965.8123 967.8110 0.2065
21-17R1)  989.0216  992.1458  984.3439 984.4040 984.3300 0.0075
21-17R3)  933.4837  936.6266  926.2577 926.3192 927.1920 0.0941
21-17R4)  890.4729  893.6457  880.4657 880.5284 882.5230 0.2260
22-17R0) 1018.0736 1021.6011  1006.8769 1006.9413 1006.9650 0.0024
22-17R1) 1005.1215 1008.6131  994.1299 994.1940 994.1120 0.0082
22-17R2)  980.6685  984.1649  969.4429 969.5072 969.5300 0.0024
the states 40y and 2o, were included. For simplicity, Relativistic corrections are found using a nonrelativistic

terms proportional to the differences(—¢/) in Eq. (33 zeroth-order Hamiltonian and first-order perturbation theory.
were neglected in calculations of the off-diagonal matrix el-The perturbation operator is given by

ements of the expression-(1/2u)B+1). This approxima- 1
tion is fully justified asymptotically, since the energies are  H™= a2{ ——
degenerate. Table | demonstrates the good agreement be- 2
tween the two-state nonadiabatic results and experiment; the (41
average discrepancy is of order 0.015%. In order to improvéderes(R) is the BO energy is the fine structure constant,
the accuracy of the calculations, more states should be ine=e?/(%c), and é is the Dirac delta function. For each vi-
cluded in the calculation, including states® In addition, a  bronic level, the relativistic correction is obtained as a dif-
complete calculation of theé matrix will increase the accu- ference between the energies calculated with and without the
racy. relativistic Hamiltonian. These are considered rather accurate

2 a
+5lorm+are)]).

R+ —+—
e(R) s
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and well established. Radiative corrections are based on cal- classical theory, the use of common translation factors
culations of the Bethe logarithii:!°LLike the relativistic cor- as opposed to state-dependent translation factors leads
rections, radiative corrections are obtained from calculations to faster convergence.

of the vibronic energies with and without the necessary cor-

rections. In our calculations, radiative and relativistic correc-  Improvement of the method developed here can be car-
tions were taken as per referefftand added to the two-state ried out along the following lines:

results. (@ Calculation of the off-diagonal elements of thenatrix

will contribute to increased numerical accuracy of the

calculations. Furthermore, the correct value of the off-
VI. CONCLUSIONS diagonal matrix elements of the mattixwill allow the
correct estimation of the magnitude of the gerade-

In this paper, the modified Born-Oppenheimer basis set ungerade coupling terms for HD

(MBQB) method was developeq anql used to carry out Cal'(b) Calculations of angular coupling terms will open the
culations of the bound-state rovibronic energies of the hydro- way to calculate vibronic energies of excited states
gen molecular ion and its isotopic variants. The issue of her—C) Optimization of the computer codes to use Iéss
miticity was specifically addressed, and the equations wer(g. memory, so that larger basis set sizes could be used, is
derived in an explicitly Hermitian form. The method was desirablé '
Fested numerically and accurate results were obtaingd, Sh(.)vi"d Generalizations of the formulas to include derivatives
INg an average error of calculated transition energies W'th of the switching function will increase the accuracy of
rgspect to experlmental. resylts of 0.015%. The dllagonahza- the calculations and possibly fix some of the symmetry
tion of the nuclear Hamiltonian was performed using a Fou- problems when a state-dependent switching function is
rier grid Hamiltonian-discrete variable representatiBGH- used

DVR) method_, wh|ch_we generahze_zd f_or this purpose to( ) Finally, this method can be used to calculate vibronic
include a nonlinear grid and first derivative coupling term.

o ; . energies of excited stat¢s.g., the 8lo statg. These
con;z:igsg-vatlon and calculations have led to the following are expected to be sensitive to the nonadiabatic cou-

pling terms, and to the best of our knowledge, calcula-
(@ The modified Born-Oppenheimer basis set method is a tions beyond the adiabatic approximation were never
useful method that provides deep insight into the cou- performed for these states.
pling matrices involved in electronic transitions. It has
been shown to be effective in predicting the correct  In the adiabatic BO representation, dynamics occurs be-
behavior of the coupling matrices, and gave promisingc@use of nonadiabatic transitions induced by the nuclear ki-
results for the transition energies of FiDwithin the ~ Netic energy operator; all other parts of the Hamiltonian
ground state manifold. (e.g., fine and hyperfine structurare incorporated into the
(b) The matrix elements of the coupling matrices resultingdetermination of the adiabatic potential energy surfaces.
from the MBOBS method are smaller in magnitude asHence, in order to do dynamics, it is essential to calculate the
compared with the corresponding matrix elements innohadiabatic matrix elements arising from the nuclear kinetic
the BOBS theory. This may lead to faster convergenceé@n€rgy operator. Computer codes that calculate BO energies
with regard to the number of basis states included irRhd wave functions using configuration-interaction self-
the expansion as compared with the original BOBSConsistent-field methods shouaésoincorporate an option to
method. calculate nonadiabatic coupling matrix elements since all dy-
(c) The expansion in terms ofm/x of the Hamiltonian, namics involving curve cro;sing anq asymptotic degeneracy
which was used in the derivation of E(3), is such ~ are induced by these coupling matrix elements.
that hermiticity of the nuclear Hamiltonian matrix is In the more general case of multielectron systems, effi-
not guarantee?® In Ref. 28, it was shown that this cient configuration interaction methods for calculating first
sort of error can not be ignored for the problems treatedtnd second nuclear derivative coupling matrix elements, in-
here. Consequently, the method was simplified bycorporating the asymptotic motion of the electrons with the
means of a state-independent scattering coordinate. Afwclei into the calculation of the nonadiabatic matrix ele-
other solution to the problem could be the addition of Ments, need to be developed. Asymptotic expansions of the
higher terms to the expansion of the Hamiltonian. Molecular wave functions in terms of atomic basis functions
However, this adds to the complexity of the alreadyin Powers of IR may be sufficient to incorporate the
complicated formulas. Thorson and co-workers havedSymptotic motion of the electrons with the nuclei.
argued that probability is conserved even when the
Hamiltonian is not I—.Iermitieu?i?38 However, it is Ot A~ NOWLEDGMENTS
clear that the proof given by Delos and Thorson for this
statemerff is valid in the general case presented here.  This work was supported in part by grants from the
(d) The use of a state-independent switching function simU.S.—Israel Binational Science Foundation and the Israel
plifies the calculations significantly, and leads to accu-Academy of Science. We thank T. C. Scott for developing
rate results. This conclusion is supported by the reviewthe code to calculate the integrals overand ¢ needed to
of Errea and co-workefavhich shows that in a semi- form the electronic matrix elements, and G. Hadinger, M.
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their code for the three-body electronic Hamiltonian. UsefulThe Hamiltonian is diagonal in both total angular momentum
conversations with John B. Delos and Suehiro Iwata are€l and its projection along the nuclear axis;. From the

gratefully acknowledged. above separation, one can show that matrix elements of the

APPENDIX A: SEPARATION OF ANGULAR
COORDINATES IN THE BOBS THEORY

Here we apply the separation of angular coordinates t
the BOBS total wave function, and derive the radial Schro
dinger equation. This separation is made possible by tran

Hamiltonian which are off-diagonal with respect to the quan-
tum numberA (the eigenvalue ok ,) will vanish unlessA’
=A,A*1. This originates from the integration ovgrafter

Integration overd and ¢ is carried out. The electronic wave
functions are identified by the united atom limit quantum
Qumbersn, | andA (n andl are designated by the common

. . . . 4’30 -
forming the coordinate system from a space-fixed coordinat&'dex k, for simplicity of notation.”*" The Schrodinger

system to a molecule-rotating coordinate systéfiWe fur-

ther simplify the resulting coupling matrices by transforma-
tion of the electronic coordinates,fy,z) to prolate spheroi-

dal coordinategé, n,x) defined by

[ x=3Reosy (@ D1~ 77
1
{ y=5Rsiny (@ D1 )

(A1)

Z—E 577.

\

The total wave function is expanded as follows:

.1

‘P(rg!R)zﬁAE’k MEJ (P‘IEA(gvn!R)Q‘I:\l/lJ,A(0!¢1X)G‘I3/|J(R)v
(A2)

where the angular functiorﬁﬂAJ,A(e,d;,X) are given by

1
Qi A(6:6.) = 5—exp(iMyp)exp(iAx)diy \(6).

The functionsdﬁ,lJ’A(e) satisfy the differential equation,

& d cotd M3+A?
(9—62+C0tt9—+2MJA

6 singd st g
+J(J+1) dﬂ,,J|A(0)=O, (A3)
and the recursion relation,
N J A M, o
5T cotf+ p MJ,A(G)
=JAEA+DEF A, 4=2(0). (A4)

Using the expansion in E¢A2), integration of Eq(9) over

52 3

Jd m
0o _ 2
Bk'k_f dT‘Pk'_&RZ‘Pk_"ﬁJ' dT@k'—&RQDkJF ﬁ(ﬁk/_8k)f dT(Pk'rg_&RQDk_ﬁ

equation for the nuclear problefi&q. (9)] can now be writ-
ten in a more explicit way,

1 L d>  J(J+1)—2A2
2|\ dR2 R2
:(lE—U)Gﬂ,,J.

d
(R) 04 O
+2P® 2 +B%+D

J

(A5)

Here P(R is the radial part of the first derivative coupling
term defined by

J
IR

N d
2 9z

X,Y,Z

®KA 5 (A6)

(R) _ =z
Peaka= J drgeia

where the¢ and » part of the electronic wave function is
denoted bypy A= ¢ A (&, 7,R). DO is the off-diagonal inA
coupling matrix originating from the angular terms of the
nuclear kinetic energy operaterV%/Z,u and the matrixP.

B° does not contribute to coupling terms off-diagonalAin
since the electronic basis functions depend only on the mag-
nitude of the vectoR, and not on the angleg and ¢. We
now complete the transformation to prolate spheroidal coor-
dinates. Upon using commutation relations between the vari-
ous operatoré the coupling terms in Eq(A5) can be ex-
pressed by

P(I,?):f dT(pk’i(Pk+15k’k+m(8k’_8k)
k’k JR 2R 2R

) mMAR
X | drergext T(Sk’_sk)

X f drew Eney, (A7)
where the subscript is omitted for simplicity and the diag-
onal element vanishé$.The matrix elements dB° take the
form

=& teg

J m(4
R

f drgokyrS(pk

3m " R, mR d
+?J\ dT(,DkrrgV(,Dk_)\ m 28kr+§8k de@krgﬂwk_T(Skr_Sk)f dT(pkrg’r]ﬁ(pk

A%m

2

3m
5 d7ew EnVey

and on the diagonal, one obtains

eOkrk— f dTGDk’V‘Pk}u

(A8)
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Bkk_ _J’ dT

Here the term proportional ta in Eq. (A8) vanishes due to symmetf§ . The formula forBE,k can be simplified whem,
# ¢, such that the second derivative of the electronic wave function with resp&need not be calculated.

Using Egs.(A8) and (A7) we are now able to derive the following expression for the mafithat appears in the radial
Eq. (13),

deyr 3m m(ey: d Ipys
BO, (k' £k = — fd Iow Ioi ?fdwkrrévsow (e = sk)f ( Pk 9Pk )

2

’ 2 3m 2 A m '
ekt ey dTngrg(pk‘l‘Ez- drer gVt T[sk-l- Re]. (A9)

(?(Pk n 3 m(4
R| "2R? R\R

R R PRGR T 9R Pk
m ’ ’ 2 R 4 4
_W[R(sk,+sk)+4(sk,+sk)] dT(pk/rg(pk—m)\ (ak,—l—sk)-l-z(ek,—ksk) d7op Eney
ng/ (9(,Dk l"n)\2
—5 | drew énVert — (Sk' g | dr IR Enev— | drowén—5 7R T d7er Vey. (A10)

On the diagonaIEEkz BEk. Equation(A10) is general, and is valid also in the case of degeneracy. Moreover, using this
formula, one need not calculate the second derivative with respétiofathe electronic wave function.
Finally, the off-diagonal inA coupling matrixD° is given by

1 Opr A
DE’A’,kAIE 5A/,A*1\/(‘]+A)(‘]_A+l)_ = \/(J A) \]+A+1) Bk’A’ KA T = Ak’A/ KA
Orr
+ 22| Sar - VI A T-A+ D+ AI:",2+1\/(J—A)(J+A+1) A
A
deT@k’A’ En+ E)[(fz—l)(l_ﬁz)]_llzfpk/\- (A11)

where we have defined the following matrix elements:

VE-D(A-5)( 9 J
Bk’A’,kA:de¢k’A’ P 7 (ﬂ(y—éwz\—fﬁsﬁm) (A12)
VE-D(A-9°) [ d J
Ak’A’,kA:f dreyrp gz_ 772 7 ( a—é_—(PkA_?]%%DkA)
R 1
(Sk’_sk)f dreaV(E—1)(1—7 )‘PkA_EJ dreea [(£2—1)(1—7°)] Y2y, . (A13)

The last equation was simplified using commutation relations between the various opérators.

APPENDIX B: DETAILED DERIVATION OF COUPLING 2. The second derivative matrix B

MATRICES OF THE MBOBS METHOD
From Eq.(29) we have

1. The first derivative matrix 11

Upon separation of angular coordinates, conversion into
prolate spheroidal coordinates and using E88) and (A7),
the radial part of the first derivative matrix is obtained,

¢9€Dk m(sk’ &k)
R
H(k’|)(_J dTQDk/ T e— dTQDk/rg(pk

Bk’k: dF(pk/(F, R)

T
Ver'g"i'EVg} @(r,R). (B2)

Basically, this is very similar to the BOBB® matrix, when
mR \ is replaced by the negative of the switching function. The
- T(Sk'_sk)f drew fEney. (B1)  derivation of the matrix elements after integration over an-
gular coordinates is thus very simple. The result obtained
The diagonal matrix elements vanidh{® =0. after some algebra is
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2
q d 3 q d m(4 . q 2
TPk 732 ﬁR (pk+ TQk! R(Pk R R8kr+8k T(,Dklrgng

m , 0 3m 2
+§(8k’_8k) dT(Pk/rgﬁng‘F? d’TQDk/rgVQDk

R
28kr+§8|i)fdr(pkrf§7](pk k'#k

3
—Ef drew féEnVer— 8k’ Sk)J drewfén aR}

Bk’ k= (BS)

m
+E{J\ dT(Pk'fZV(Pk_SkJ d’Tng/fz(pk}

a(Pk m 4
_2 J R8k+8k

2810L )J dTQDkng@k} k'=k

2
f dTQDkrquk

R2 f dT(ka’ VQDk+m

de‘PkuVQDk_Skf dTSPkf2<Pk}

mfd féEnV m
\—7 ot EV et 5

In the derivation of these formulas, we assumed that théegrated over have the same symmetry. But, when different
result of operating wittV, or V¢ on the switching function Symmetry is involved and the states are not degenerate as-
is negligible. Since the swnchmg function becomes a conymptotically(e.g., the statessb-; and 3o ), the asymptotic
stant asymptotically, this approximation is fully justified for result for the matrix element of the commutator is
large R. At small R, this approximation may create small Jd7¢1s, [f,h]¢sps —&5ps (©) ~ €155 (), which is a
errors, but as will be shown later, the asymptotic nature otonstant different than zero.
the coupling matrix elements is the dominant factor in deter-  For an explicitly Hermitian form of the radial equation,
mining the bound-state energies. Moreover, this approximathe relevant matrix i€ = B— (d/dR)II®, notB. Using Egs.
tion significantly simplifies the derivation and the resulting (B1), (B3) and the approximation
formulas. Nevertheless, care must be taken when this ap- 1
proximati_on_ is qsed. o f dwk,thq,k%EU d7¢k,f2h¢k+f dT%Dk'hfZ(Pk}

To within this approximation, one can conclude that the
switching function commutes with the electronic Hamil- 1
tonian,fh~hf. Therefore matrix elements of the commuta- = E(sk,+sk)f d7ew 2oy, (B4)
tor [ f,h] between electronic basis states should vanish. This
is a valid approximation as long as the two states being inve obtain a symmetric expression By

J Ip Ik
TR OR

3m m(skr_{;‘k) do  doyr
— ’ 2 — g — — —— 2
R2 f dTng rquok—i_ 2R T\ Pk JR JR P r

m
— W[R(8&,+s|’()+4(sk,+gk)]f dT(pkrrg(pk

.m
2

R
+m( e tet Z(Sli"’_sli) f drew Enf ey

2 1 2
dref V(,Dk—z(skr-i-sk) dro, oy

(B5)

Iy 3<Pk)

3m mR
_TJ drow EnViet T(Sk’_sk)f drénf| —=-ex—ew g |-

3. The electron reduced mass matrix |
The matrix! is defined in Eq(30), and derived in detail in Appendix C.
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4. The angular coupling matrix D

The matrixD is constructed by operating wit‘ﬁﬁ and V}-V} on the angular function@ﬂAJ'A. Inserting the switching

function as a coefficient oﬁg-ﬁR (in analogy with\ in the BOBS theory; results in the angular contributions of the matrix
IT and the nuclear kinetic energy operator. We thus obtain

f
Vit 5V Ve

Diarka= P (5A'A+1+5A/ 1)2 fd)(dﬁdd)f dT(Pk’A'QM A ‘PkAQMJA (B6)

The factor of 1/2r compensates for the extrarZactor contained irdr. After some algebra, we find

5A’,A+1
RZ

Dk’A’,kAZE 5A’,A*1\/(‘J+A)(‘J_A+l)_ \/(J A) J+A+1) K’A’ KA EAI('A’,kA

+1 8y a- A+ A) (I A+1)+5A—§LW(J NQFATD) |z A
f
deﬂPk’A’ En— 5)[(52_1)(1_712)]_1/2€ka (B7)

where[compare Eqs(A12) and (A13)],

\/(52—1)(1—n2)f< J a

f
Bk’A’,kA:f d7egrar 272 ﬂa_g@kA_gﬁ(PkA): (B8)

and

V(§2—1)(1—772)f( J a )

f
Ak’A’,kA:f A7y P ga_gﬁpkA_ﬂ%(PkA

mR2
= (8k’ J'dﬂPk’A’\/ E-1)(1- 79 fopp (B9)
lJ' 2 27-112
3 d7er A [(E°=D)(1—7n7)] "Forp . (B10)

The last equation was simplified using commutation relatins.

APPENDIX C: DETAILED DERIVATION OF THE definition of the matrixA,,, = —m(k’|[h,S]|k). Using Eq.
MATRIX | (2), the identity ¥g/7V)=[Vg.h], the definitions for the
Here we derive an expression for the Hermitian matrixmatrix elements oA andP and inserting a complete set of

[—(1/2w)B+1]. According to Eq.(30) the matrix element States, we find
of the | matrix is given by

m 1 f+N\2
lew=——|— >=(K'|| ——| V3k 1z z M, 2
k’k M|: 2m< |( 2 ) g| > Ik,k:ﬂ; AkJAJn_ﬂ Sk’+8k_§z SE’k
ok |S( Vel V+ |k>} _—(8k Sk')z [Skj-P k+Pk’ -Sik]
= [ (K’|[h,ST2K) + (K|S ( VeV |k>} 2 Bt By A .
1 ric A |
1 S m 1
:ﬂzj‘« Ak'jAjk—ﬂU( [S-| Velr| V+ 5] 1K)

Sincegkagjk , |3J'k= - IS]k and/&ij _'&jk! EQS(CZ) rep-
~ —(k |(VR| ) s|k), (C1)  resent the Hermitian matrix, but implementation of this for-
mula requires the use of a complete set of states. Neverthe-
where derivatives of the switching function have been conless, a complete set of states is not needed when a formula
sistently neglected. In the last equation, we symmetrized théor (— (1/2u)B+1) is considered. Recalling the definition of
operator in order to make it HermitidnWe also used the B [using Eqgs(28) and(B2)],

1
V+ =
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Bk’k:<k,|

AT

—E(kl( Vet 5 V)|J> (Il Vet 5 V)|k>

—2 (Prrj+Acr) - (Pt Aj) + V- (Pt Acri)-

(C3
We now define
Bik=Bik— Ve (Pt Axr)
—2 (Prrj+ Arj) - (Pt Ajo). (C4
Adding this result to Eq(C2) results in
1.
- ﬂBk/k‘l‘lkrk
1 I mi , . 2\ R
:—ﬂ; ijpjn_ﬂ Sk’+8k_§2 Sk’k
——<sk ekoZ [Scj Pkt Prej-Sikdl. (C5)

This equation gives a Hermitian expression for((L/2x)B
+1). A complete basis set gf states is still required in this
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