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Modified Born-Oppenheimer basis for nonadiabatic coupling: Application
to the vibronic spectrum of HD 1

Inbal Tuvia) and Y. B. Band
Department of Chemistry, Ben-Gurion University, Beer-Sheva, Israel

~Received 5 January 1999; accepted 24 May 1999!

Nonadiabatic matrix elements, when computed using a Born-Oppenheimer~BO! basis, do not
vanish asymptotically because the motion of the electrons with the nuclei at large internuclear
separations is not taken into account. We apply a method suggested by Delos@Rev. Mod. Phys.53,
287~1981!# to include the effect of electron translation factors in a quantum-mechanical framework,
thus correcting the BO basis to incorporate proper boundary conditions. We calculate the
nonadiabatic matrix elements for H2

1 and its isotopic variants. We focus our calculations on HD1,
for which experimental results exist, and calculate its vibronic spectrum. This is the first application
of this method to calculate high precision spectroscopic information for molecular systems.
© 1999 American Institute of Physics.@S0021-9606~99!01331-8#
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I. INTRODUCTION

Many calculations in molecular quantum chemistry re
on the Born-Oppenheimer~BO! approximation, in which,
due to the large ratio between the mass of the electron
nuclei, the motion of the electrons is calculated in the pr
ence of nuclei that are fixed in space.1,2 Therefore, the elec-
tronic motion depends parametrically on the position of
nuclei, but not on their momenta. Such calculations are o
performed using one potential energy surface—the electr
ground state surface. In cases where there is a large di
ence in energy between the ground state and the exc
states, the BO approximation is often adequate. Howeve
many cases, today’s experiments and calculations are re
ing the point where the accuracy required does not justify
use of the BO approximation. Moreover, for processes
volving excited electronic states, or where more than o
potential energy surface correlates to the same asymp
limit, and particularly in the vicinity of curve-crossing, th
BO approximation can become a poor approximation. O
way to go beyond the BO approximation is to include non
diabatic correction terms by expanding the total wave fu
tion in an adiabatic representation using a BO basis~BOBS!.
In this way, the interaction between the electronic degree
freedom and the nuclear degrees of freedom is taken
account, and higher accuracy can be attained. This meth
sometimes referred to as perturbed stationary states~PSS!
theory.3

One of the few molecular systems where an ex
quantum-mechanical calculation of the BO wave funct
can be performed is the one-electron system, H2

1 , and its
isotopic variants. The electronic wave function can be sol
exactly, since the electronic Hamiltonian is separable u
transforming to prolate spheroidal coordinates. Hence,
can calculate the nonadiabatic corrections exactly, estim
their contribution to bound-state energies, and determine
lisional information ~e.g., cross sections!. This system is
ideal for testing the BO approximation, and also for test

a!Present address: Department of Chemical Engineering, The Technolo
College of Beer-Sheva, School of Engineering, Beer-Sheva, Israel.
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the use of the BO basis in calculations involving nonad
batic corrections to structure and dynamics. However, an
tempt to use a simple expansion of the total wave function
terms of BO states leads to serious problems.4–6 This is be-
cause the BO wave functions do not account for the mot
of the electron with one of the nuclei at large internucle
separation. It results in nonadiabatic coupling matrix e
ments which do not vanish asymptotically. Therefore a sc
tering theory can not be developed, and bound-state pro
ties are incorrectly determined. In classical and semiclass
theories of molecular dynamics, this electronic motion is
corporated by introducing ‘‘electron translation factors
~ETFs! which multiply the BO wave functions, and describ
the change in momentum and kinetic energy of the electr
as they ride on the nuclei at large internuclear separation7–11

Incorporation of the effect of the asymptotic motion of ele
trons with the nuclei in a quantum-mechanical theory is n
essary in order to describe structure and dynamics corre
To date, calculations using these concepts have only b
worked out in the context of collision dynamics4 and have
not been tested in the regime of high precision spectrosc
where stringent comparison with high quality data can
made.

Other methods exist that can be used to calculate
bronic energies of H2

1 without taking ETFs into account
Among them is the variational method of Bishop,12,13 which
uses analytic functions as a basis set. This method is accu
only when low lying bound states are involved. The meth
of Wolniewicz and Poll14,15 is based on perturbation theory
but can not be used for excited states. Moss has significa
improved the accuracy of the calculations by using the tra
formed Hamiltonian method,16 and the artificial channe
method of Balint-Kurtiet al.17 However, although the result
of Moss for the transition frequencies of the ground state
HD1 are the most accurate to date, this method is also l
ited when bound-state energies of the excited states are
volved. Furthermore, this method does not produce a w
function. The reviews by Carringtonet al.18 and Leach and
Moss19 summarize the advantages and disadvantages
these methods. An adiabatic hyperspherical treatment

cal
8 © 1999 American Institute of Physics
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suggested by Soloviev20 and Macek.21,22 Hyperspherical co-
ordinates have been shown to be a natural system of co
nates to describe molecular problems and yet incorporate
asymptotic motion of the electrons with the nuclei. Howev
since the resulting differential equations are complicated
has been used primarily within the adiabatic approximati
Moreover, the overwhelming majority of molecular structu
calculations are carried out using an adiabatic BO appro
and a tremendous investment into computer codes exists
ing these methods. Hence, it is important to determine
corrections necessary to the BO basis in order to incorpo
the electronic motion with the nuclei asymptotically, a
characterize the results obtained with these corrections
comparing the results with high precision spectroscopic d

A theory for including the motion of electrons with th
nuclei was developed by Delos, Thorson and others.4,7,23 A
related method has been suggested by Green.24 The basic
idea behind these methods is the use of a generalized
tering coordinate which is a function of both the nucle
coordinate and the electronic coordinate in a quantu
mechanical framework. To the best of our knowledge, s
methods were never applied to calculate high accur
bound-state energies of the hydrogen molecular ion nor
other spectroscopic data for other molecular systems.

In this paper, we have modified the approach of Del4

to formulate a theory that can be applied to calculate bou
state energies of both the ground and excited states of
molecular hydrogen ion. Here we present our results
HD1 and compare with experimentally determined transit
energies. The adiabatic BOBS theory of the three-body pr
lem is reviewed in Sec. II. In Sec. III, the modified BOB
theory ~MBOBS! is presented. Results and discussion
presented in Sec. V, and conclusions are drawn in Sec.

II. BORN-OPPENHEIMER BASIS FORMULATION OF
THE THREE-BODY PROBLEM

A. Statement of the problem

Consider the system described in Fig. 1. HereA andB
are nuclei with massMA and MB ~in what follows we as-
sumeMA>MB!, andRW is the nuclear coordinate going from
A to B. The electronic coordinate can be chosen asrWg ,
which connects the geometric center of the nuclei with
electron, orrW, which connects the center of mass of the tw
nuclei with the electron. The vectorsRW , rW andrWg are related
via the expression

rWg5rW2
l

2
RW . ~1!

Herel5(MA2MB)/(MA1MB) is the mass asymmetry fac
tor ~note that 0<l,1 sinceMA>MB!.25 Accordingly, the
gradient with respect to the nuclear coordinateRW is related
using Eq.~1!,

¹W RurW5¹W RurWg
2

l

2
¹W gU

RW
, ~2!

where ¹W g means a gradient with respect torWg holding RW

fixed. For simplicity of notation, we define
di-
he
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¹W R[¹W RurWg
. ~3!

The total Hamiltonian for the two nuclei and one ele
tron, after subtracting off the center of mass contribution, c
be written in atomic units as

H52
1

2m
¹g

22
1

2m S ¹W R2
l

2
¹W gD 2

1
1

R
2

1

r A
2

1

r B
. ~4!

The masses are defined by

H m5
MAMB

MA1MB

1

m
5

1

me
1

1

MA1MB

,

whereme is the mass of the electron, andr i ( i 5A,B) is the
distance between the nucleusi and the electron. The Schro
dinger equation takes the form

HC~rWg ,RW !5EC~rWg ,RW !, ~5!

and the wave functionC can be expanded in an adiabatic B
basis set of electronic wave functions,

C~rWg ,RW !5(
k

wk~rWg ,R!Fk~RW !, ~6!

where $wk(rWg ,R)% are the electronic wave functions an

$Fk(RW )% are the nuclear wave functions.
The electronic Hamiltonian is given by

h52
1

2m
¹g

22F 1

r A
1

1

r B
G5T1V. ~7!

The set of adiabatic BO functions$wk(rWg ,R)% are eigenfunc-
tions of the electronic Hamiltonian, and obey the eigenva
equation

FIG. 1. Coordinates for the one-electron–two nuclei system.O is an exter-
nal origin. CMN is the center of mass of the two nucleiA andB. CM is the
center of mass of the whole system.rWg is a vector from the geometric cente
of the nuclei to the electron. It is assumed thatMA.MB .
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hwk~rWg ,R!5«k~R!wk~rWg ,R!. ~8!

Inserting Eq.~6! into the Schrodinger equation, multiplyin
on the left by an electronic function and integrating over
electronic coordinates, results in a set of coupled differen
equations for the nuclear wave functionF(RW ),

H 2
1

2m
@1¹R

212P¢ ~R!•¹W R1B0~R!#1U~R!J F~RW !

5EF~RW !. ~9!

Here P¢ and B0 are the first and second derivative coupli
matrices given by

PW k8k~R!5E drWgwk8~rWg ,R!S ¹W R2
l

2
¹W gDwk~rWg ,R! ~10!

and

Bk8k
0

~R!5E drWgwk8~rWg ,R!S ¹W R2
l

2
¹W gD 2

wk~rWg ,R!.

~11!

The potential energy matrixU is given by: Uk8k(R)
5(«k(R)1(1/R))dk8k . The solution of Eq.~9! is performed
in two steps. First, Eq.~8! is solved to get the basis se
functions$wk% and the potential energies«k as a function of
internuclear coordinate. This is done by transforming
problem into prolate spheroidal coordinates in which
electronic Hamiltonian is separable.26 In the second step, Eq
~9! is converted to a radial equation by transformation to
rotating coordinate system, and expansion of the wave fu
tion in symmetric-top eigenfunctions followed by integratio
over the angular coordinates, as explained, e.g., in Refs
and 28. The resulting nuclear wave functionG(R) is a func-
tion of the magnitude of the nuclear coordinate only. T
radial equation is then solved to obtain the bound-state e
gies and the wave function. For more details s
Appendix A.

The differential equation for the nuclear wave functi
GMJ

J and the eigenenergyE is given by

2
1

2m F1S d2

dR2 2
J~J11!22L2

R2 D12P(R)
d

dR
1B01D0GGMJ

J

5~1E2U!GMJ

J , ~12!

whereP(R) is the radial part of the first derivative couplin
termP¢ , D0 is the coupling matrix originating from the angu
lar terms of the nuclear kinetic energy operator2¹R

2/2m
which are off-diagonal in the magnetic quantum numberL,
and the matrixB0 has been defined above. The sum of t
nonadiabatic coupling terms appearing in Eq.~12! is Hermit-
ian, although neitherP¢ nor B0 are Hermitian. Equation~12!
can be written in an explicitly Hermitian form as follows:

2
1

2m F1S d2

dR2 2
J~J11!22L2

R2 D
1P(R)

d

dR
1

d

dR
P(R)1B̃01D0GGMJ

J

5@1E2U#GMJ

J . ~13!
l
al

e
e

a
c-
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e
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e

e

Here B̃0 is the Hermitian matrix,

B̃05B02S d

dR
P(R)D . ~14!

The derivative with respect toR in the second term on the
right-hand side of Eq.~14! operates only onP(R) and no
further. For more details, see Appendix A.

B. Problems associated with the Born-Oppenheimer
basis set

The main problem with the BOBS theory when appli
to the molecular hydrogen ion is that individual terms in t
expansion@Eq. ~6!# do not satisfy the scattering bounda
conditions.4,5 Since the sum over states is truncated in pr
tice, the result is that the total wave function does not ob
standard scattering boundary conditions as well. Asympt
cally, the picture changes from a molecular picture to
atomic picture wherein the electron moves with one of
nuclei. However, the BO basis set functions are molecula
nature. They are therefore unable to describe the cor
physics asymptotically. As a consequence, several diffic
ties appear which are evident upon calculations of the ma
elements of the first derivative coupling matrixP¢ .

~1! The first derivative coupling matrixP¢ , does not vanish
asymptoticallyasR→`. This is because in the calcula
tion of matrix elements of¹W R , the electronic coordinate
is held fixed with respect to the geometric center of t
nuclei rather than with respect to either nucleus. A c
culation of these terms shows that asR→`, PW k8k(R)
→const which is not necessarily zero. Physically, th
represents the motion of the atomic orbitals relative
the center of mass of the nuclei asR changes. These
findings do not allow a scattering theory to be form
lated, since boundary conditions are not obeyed.

~2! The first derivative coupling termP¢ also contains ficti-
tious ‘‘origin dependent’’ couplings.This is evident
when one calculates theP¢ matrix between states with
different parity (g,u) and are again a result of the inap
propriate formulation of the theory. This is particular
important in the ground state manifold of HD1, where
the only contribution to the matrixP¢ is fictitious. Calcu-
lations of theP¢ matrix show a non-negligible contribu
tion between the states 1ssg and 2psu , whose order of
magnitude is much too large. These contributions
eliminated in the corrected theory described below.

The common source of the above problems is the lack
a proper formulation of the asymptotic coupling between
electronic motion and the nuclei motion within the quantu
theory. Semiclassically, this coupling is represented by e
tron translation factors~ETFs!. An ETF on nucleusA is de-
scribed by4

FA~rW,t !5expF i

\
~mvW A•rW2 1

2 mvA
2 t !G , ~15!

wherevW A is the velocity of nucleusA, andrW is the electronic
coordinate. The ETF represents the momentum and kin
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energy of the electron as it rides on nucleusA or B. The
electronic wave function for the electron around nucleusA
can be defined as

ck,A~rW,t !5FA~rW,t !wk,A~rWA!expF2
i

\
ek,At G . ~16!

Herewk,A(rWA) is an ordinary atomic orbital for atomA, and
ek,A is its energy. To elaborate on this point, we note that
coupling matrixP¢ represents the total change of the ba
functions with respect to the nuclear coordinateR. The effect
of the coupling matrixP¢ can be divided into two parts,

~1! Rotation, distortion, polarization and change of charac
of the basis set functions withR.

~2! Motion of the electron along with the atomic nuclei.

The first part is responsible for nonadiabatic transitio
Couplings originating from the second part are not physic
as was shown by Delos.4 Including the effect of ETFs in a
quantum theory cancels the fictitious couplings that wo
otherwise be present. However, quantum mechanically,
not clear how to define ETFs since they involve the veloc
of one of the nuclei, and thus become ambiguous in
molecular adiabatic BO basis. Steps to overcome this p
lem have been taken by Thorson and Delos7 and Davis and
Thorson.23 Delos4 generalized those methods to the quant
case and developed a theory in which the effect of
asymptotic motion of the electrons with the nuclei is i
cluded in a quantum-mechanical fashion. The main idea
his method is a generalized scattering coordinate which
function of both the nuclear coordinate and the electro
coordinate. In this theory, called the modified Bor
Oppenheimer basis set~MBOB! method, all of the problems
listed above are eliminated. The generalized scattering c
dinate is constructed using a switching function that
scribes an electron translation which is a function of the e
tron’s local behavior. As a consequence, the scatte
coordinate switches between the nuclear coordinateRW at
short range and the atomic coordinateRW i ( i 5A,B) at long
range. Davis and Thorson tested their theory on reson
near-resonant charge exchange collision problems.23 How-
ever, application of these methods was not performed in
context of bound-state energies of the hydrogen molec
ion nor any other molecular system. The details of t
method are described in the next section.

III. THE MODIFIED BORN-OPPENHEIMER BASIS SET
FORMULATION

A. The basic ansatz

As described above, individual terms in the BOBS e
pansion for the total wave function do not satisfy stand
scattering boundary conditions. The main reason is the
that asymptotically, the electron is bound to one of the nu
and thus, upon dissociation, the system is best describe
terms of atomic coordinates. There are three different Ja
sets of coordinates which can be used to describe the
electron two-nuclei system at different stages of the sca
ing process. These are illustrated in Fig. 2. A realistic sc
e
s
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tering coordinate must be able to smoothly transform fr
the molecular picture withRW as the scattering coordinate t
the atomic situation at dissociation described byRW A or RW B as
the scattering coordinate~see Fig. 2!. One should expect tha
the scattering coordinate will be a function of both t
nuclear coordinateRW and the electronic coordinaterWg . Fol-
lowing Delos,4 we thus define the scattering coordinate to

R̃W (rWg ,RW ). In general, the coordinateR̃W can be state-
dependent. A complete treatment with a state-depend
scattering coordinate can be found in Ref. 28. In the cal

lations we present here, we have takenR̃W as state-
independent. The BOBS expansion of the total wave fu
tion is then replaced by the ansatz:

C~rWg ,RW !5(
k

ŵk~rWg ,R̃!Fk~R̃W !. ~17!

If the basis set functions$ŵk% are of atomic character~i.e.,

single-center functions! then one may replaceR̃W by RW A (RW B)
or a constant timesRW A (RW B). But, if the basis set functions

are of molecular character~two-center functions! thenR̃W be-
comes a curvilinear coordinate.

B. Derivation of the coupled equations

A complete derivation of the coupled equations result
from Eq. ~17! is presented in the review article by Delos4

Here we survey the main results. The heavy-particle coo
nate is chosen to be

R̃W ~rWg ,RW !5RW 1
m

m
sW ~rWg ,RW !, ~18!

where

FIG. 2. Three Jacobi coordinate systems for relative coordinates of
heavy particlesA, B, and an electrone2 for the case whereMA.MB .
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sW5
1

2
~ f 1l!rWg2

1

8
~12l2!RW . ~19!

f 5 f (rWg ,R) is a switching function which is antisymmetri
with respect to electronic coordinaterWg , and goes asymptoti

cally as R→` to 61. Asymptotically, R̃W'A(m i /m)RW i ( i
5A,B), m i being the nuclear reduced mass in channei ,
e.g.,mA5(me1MA)MB /(me1MA1MB). The main reason
this particular choice of scattering coordinate is chos
comes from the fact that using this form in a classical the
has resolved many of the problems of the BOBS theo4

However, the switching function is yet to be determined.
The next step is to map the original BO basis

$wk(rWg ,R)% by using new coordinates so as to create
basis $ŵk(rWg ,R̃)%. The final step is to express the Ham
tonian in Eq.~4! in terms of the new set of coordinates. As
result, the Hamiltonian can be expanded in powers
Am/m'vnuclear/velectronic. Since the collisions considered a
slow, one can assume that the nuclear velocity is m
smaller than the typical electronic velocity, so that terms
order (m/m)3/2 ~'1025 for H2

1! and higher powers can b
consistently neglected. In addition, terms of orderm/m
which are also proportional to derivatives of the switchi
function or related factors@e.g., (f 221)# can also be ne-
glected. The matrix elements of the new Hamiltonian
given by~the coordinaterW, rather thanrWg is used for the sake
of consistency with Ref. 4; the transformation between
two coordinates is performed later on!,

^CuH~rW,R̃W !uC&

5(
k8,k

^ŵk8~rW,R̃!Fk8~R̃W !uh8uŵk~rW,R̃!Fk~R̃W !&

2
1

2m (
k8,k

@^ŵk8~rW,R̃!Fk8~R̃W !uDaDauŵk~rW,R̃!Fk~R̃W !&

1^ŵk8~rW,R̃!Fk8~R̃W !u]aab/]r aDauŵk~rW,R̃!Fk~R̃W !&#,

~20!

with

h852
1

2m Fpapa2
m

m
abaacapbpcG1V1

1

R
, ~21!

and Da5Pa1abapb, where a,b represent the direction
ı̂ ,̂,k̂ and the summation over common indices is implic
Here we used the definitions

pb5~]/]r b!R̃
W ; Pb5~]/]R̃b!rW ; aab5~]sb/]r a!R̃

W . ~22!

Note thatPW is a derivative with respect toR̃W holding rW fixed,
not rWg , so care must be taken before comparison with
results of the BOBS method~in which all derivatives with
respect to the scattering coordinate were derived holdingrWg

fixed! can be performed.
For the purpose of numerical integration over electro

coordinates,R̃ is a dummy integration variable. We ca
n
y
.

t
e

f

h
f

e

e

.

e

c

therefore designate it by the numerical valueR. Using the
Hamiltonian given in Eq.~20!, a new set of coupled equa
tions results,

H 2
1

2m
@1¹R

212P¢ •¹W R1B#1U1I21EJ F~RW !50, ~23!

whereU is as before, and the coupling matrices are given

5
Pk8k5E drWgŵk8S Da1

1

2

]aba

]r b D ŵk ,

Bk8k5E drWgŵk8D
aDaŵk ,

I k8k5E drWgŵk8Fh82ĥ2
1

R̃
G ŵk .

~24!

C. Interpretation of coupling terms
1. The potential energy matrix U

The potential energy matrixU(R) is given by matrix
elements of the operatorh plus the factor of 1/R exactly as in
the BOBS theory. The electronic Hamiltonian that should
used to define the potential energy matrix in Eq.~23! is h8,
which is the operator defined in Eq.~21!. However, it is
convenient to expressh8 in the form

h85ĥ1
1

R̃
1S h82ĥ2

1

R̃
D 5ĥ1

1

R̃
1I . ~25!

The electron reduced mass matrixI defined by the above
equation will be discussed below. The electronic Ham
tonian operatorĥ bears the same relationship to the BO ele
tronic Hamiltonianh that ŵk(rW,R̃) bears towk(rW,R). Ex-
pressed in terms of (rW,R̃), ĥ has the same functional form a
doesh expressed in terms of (rW,R). In other words,ĥ can be
thought of as a ‘‘mapping’’ of the BO electronic Hami
tonian to the new coordinates. We thus have

Uk8k5E drWŵk8~rW,R̃!S ĥ1
1

R̃
D ŵk~rW,R̃!

5E drWgwk8~rWg ,R!S h1
1

R
D wk~rWg ,R!

5S «k1
1

R
D dk8k . ~26!

The last equality is obtained provided the basis set functi
are eigenstates of the electronic Hamiltonian. Moreover,
electronic wave functions are orthogonal, i.e.,

Sk8k5E drWŵk8~rW,R̃!ŵk~rW,R̃!

5E drWgwk8~rWg ,R!wk~rWg ,R!5dk8k . ~27!

Since the new electronic Hamiltonianĥ is practically equal
to the BO electronic Hamiltonian, the caret is omitted in E
~23! and in what follows.
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2. The corrected first derivative coupling matrix P

PW k8k5E drWŵk8~rW,R̃!S Pa1abapb1
1

2

]aba

]r b D ŵk~rW,R̃!

5E drWgwk8~rWg ,R!F¹W R2
l

2
¹W gGwk~rWg ,R!

2mE drWgwk8~rWg ,R!@ ĥ,sW#wk~rWg ,R!

5PW k8k1AW k8k . ~28!

The first term (P¢ ) is the original first derivative coupling
matrix appearing in the BOBS theory. The second term (A¢ )
is the correction matrix which cancels the fictitious couplin
originating from the first derivative coupling matrixP¢ . With
P¢ playing the role the matrixP¢ plays in the BOBS theory
standard scattering boundary conditions are obtained. In
case of the state-dependent scattering coordinate, an
matrix calledg¢ must be added toP¢ .4,28 This matrix origi-
nates from momentum transfer factors. However, when
scattering coordinate is state-independent, this matrix v
ishes identically.

3. The corrected second derivative coupling matrix B
Using the definition in Eq.~24!, we have

Bk8k5E drWŵk8~rW,R̃!~Pa1abapb!2ŵk~rW,R̃!

'E drWgwk8~rWg ,R!F¹W R1
f

2
¹W gG2

wk~rWg ,R!. ~29!

The last line of Eq.~29! is an approximation, since deriva
tives of the switching functionf have been neglected. Th
approximation is fully justified asymptotically, since th
switching function goes to a constant there. This approxim
tion simplifies the calculations significantly.

4. The electron reduced mass matrix, I
The matrixI contains corrections related to the reduc

mass of the electron. In the molecular BO basis set desc
tion, the reduced electronic mass taken into account@m
5me(MA1MB)/(me1MA1MB)# is different from the
atomic reduced electronic mass appearing in the chann
mi5meMi /(me1Mi), i 5A,B. The matrixI is proportional
to the difference between these reduced masses. In o
words, since the new first and second derivative coup
terms are made to vanish asymptotically, the remaining c
pling terms originating from small mass differences need
be taken into account separately. This is the source of tI
matrix which takes the form

I k8k5E drWŵk8~rW,R̃!Fh82ĥ2
1

R̃
G ŵk~rW,R̃!

'
1

2m
E drWgwk8~rWg ,R!@~ f 1l!¹g

2#wk~rWg ,R!

2
m

m
E drWgwk8~rWg ,R!sW•¹W RS V1

1

R
D wk~rWg ,R!. ~30!
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Here the last line results from the difference between
potential energy written in terms of (rWg ,R) and in terms of
(rWg ,R̃).

Equation~23! involves three nuclear dimensions. It ca
be reduced to a one dimensional radial equation in a fash
similar to that used in the original BOBS theory — by e
pansion in symmetric-top eigenfunctions.

D. The radial equation

In deriving the radial equation, the same expansion a
the BOBS theory@Eq. ~A2!# was used. Clearly, the sam
symmetry restrictions regarding the magnetic quantum nu
ber L appear here as well. The resulting equation is v
similar to Eq.~12! except for the addition of the matrixI ,
and is given by

E1GMJ

J 52
1

2m
1S d2

dR2 2
J~J11!22L2

R2 DGMJ

J

2
1

2m F2P(R)
d

dR
1B1D22m~ I1h!GGMJ

J .

~31!

HereP(R) means the radial part of the matrixP¢ , B is diag-
onal in L, D is a matrix representing the off-diagonal inL
coupling terms originating from the angular part of the m
trix P¢ and the angular part of the nuclear kinetic ener
operator2¹R

2/2m. All of these matrix elements are specifie
in detail in Appendix B.

E. Hermitian formulas for the matrix elements

The issue of hermiticity requires special attention sin
the discrete variable representation~DVR! method~used to
find the eigenenergies and eigenfunctions of the nuc
Hamiltonian! can lead to significant numerical errors if th
Hamiltonian matrix is not written in an explicitly Hermitian
form.29 Therefore, each coupling matrix should be examin
carefully. Since all operators and basis set functions are r
one should require that the nuclear Hamiltonian will be sy
metric with respect to interchanging basis set indices.

We start by writing the radial Eq.~31! as follows:

E1GMJ

J 52
1

2m
1S d2

dR2 2
1

R2 ~J~J11!22L2! DGMJ

J

2
1

2m S P(R)
d

dR
1

d

dR
P(R)

1B̃1D22m~ I1h! DGMJ

J . ~32!

Here B̃5B2((d/dR)P(R)), where the derivative operate
on P(R) only.

The radial part of the first derivative coupling matrixP¢

must be antisymmetric because it multiplies the opera
d/dR which is antisymmetric. From Eq.~B1! one can easily
see that this is indeed the case.

The second derivative matrixB need not be Hermitian in
general. Nevertheless, in analogy with the BOBS theory,
expect to find the matrixB̃ Hermitian. The expression give
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in Appendix B proves this assumption. In practice, howev
a derivation of a formula for (2(1/2m)B̃1I ) is simpler than
deriving B̃ and I separately.23 The resulting formula is Her-
mitian per definition, and is given by~see Appendix C for
details!

2
1

2m
B̃k8k1I k8k

52
1

2m
B̃k8k

0
2

m

2m S «k8
8 1«k82

2

R2D sk8k
(R)

2
m

2m
~«k2«k8!^k8LusW•S ¹W R2

1

2
l¹W gD ukL&

2
m

2m
~«k2«k8!^k8LuS ¹W R2

1

2
l¹W gD •sWukL&. ~33!

Here again, integration is over the prolate spheroidal coo
nates,j, h andx. Within the 1ssg and 2psu manifold of H2

1

states~states are designated by the united atom limit qu
tum numbers!, the off-diagonal elements of the second te
on the right-hand side of Eq.~33! vanish because of symme
try. This is because the radial part of the vector s is symm
ric with respect to the prolate electronic coordinateh, while
the electronic wave functions of 1ssg and 2psu are sym-
metric and antisymmetric with respect toh, respectively.
Therefore the integrand is antisymmetric, while the integ
tion boundaries are symmetric and the integral vanishes.
third and fourth terms on the right-hand side of Eq.~33!
vanish asymptotically since the energies of the ground s
manifold are degenerate asymptotically. In the ground s
manifold of HD1 it is therefore possible to estimate the o
diagonal elements of the matrix@2(1/2m)B̃k8k1I k8k# as-
suming«k'«k8 at any point inR. The result is the BOBS
Hermitian second derivative term2(1/2m)B̃k8k

0 .
The matrixD as defined by Eq.~B7! is also Hermitian,

since the original BOBSD0 matrix is Hermitian.
To summarize, as in the BOBS theory, we are able

formulate the radial Schrodinger equation in an explici
Hermitian form. It should be noted that using a sta
dependent scattering coordinate~by means of a state
dependent switching function!, hermiticity of the resulting
coupling matrices and the total Hamiltonian can not
assured.28

IV. NUMERICAL CALCULATIONS OF VIBRONIC
ENERGIES

The MBOBS method was used to calculate vibratio
rotation energies of the hydrogen molecular ion and its i
topic variants~H2

1 , HD1, D2
1!. The calculations were carrie

out in several steps:

~1! Solving the electronic wave equation for the electro
eigenenergies and the electronic wave functions. T
eigenenergies are used to construct the potential en
curves for the nuclear problem, and the electronic wa
functions are used as a basis set with which one expa
the total wave function as in Eq.~17!.
r,
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~2! Calculating the coupling matrix elements necessary
construct the Hamiltonian matrix of the Hermitia
nuclear radial equation@Eq. ~32!#.

~3! Solving the nuclear radial eigenstate problem, Eq.~32!,
by means of a specially designed discrete variable r
resentation~DVR! method.

The methods used for the calculations are descri
below.

A. Computational methods
1. Solution of the electronic problem

The electronic wave equation is given by

hw~rWg ,R!5F2
\2

2m
¹g

22
1

urWAu
2

1

urWBuGw~rWg ,R!

5«~R!w~rWg ,R!. ~34!

In prolate spheroidal coordinates this equation is separa
obtaining30:

F ]2

]x2 1L2GZ~x!50,

F ]

]j
~j221!

]

]j
1A2

L2

j221
12Rj2p2j2GX~j,R!50,

F ]

]h
~12h2!

]

]h
2A2

L2

12h2 1p2h2GY~h,R!50, ~35!

wherep2(R)52(R2/2)«(R), and the electronic wave func
tion takes the product form

w~rWg ,R!5N~R!X~j,R!Y~h,R!Z~x!. ~36!

HereN(R) is the normalization constant such that

1

2p E dxE dtwk8wk5dk8k , ~37!

with the volume element given by

dt5
pR3

4
~j22h2!djdh. ~38!

The solution of the first equation in~35! gives Z(x)
5exp@iLx#. Several methods have been developed thro
the years which can treat these kinds of differential equati
in which the separation constantA and the energy constantp
are R dependent, e.g., Refs. 26, 27, and 30–32. We use
computer program written by Hadinger and co-workers. T
program is based on the Killingbeck method associated w
Miller’s algorithm.32–35 According to the method of Had
inger and co-workers, the functionsX(j,R) andY(h,R) are
expanded in a suitable power series~there are severa
possibilities—see Ref. 32!, obtaining recursion relations fo
the coefficients and solving them according to the Hill det
minant method.36 This method also allows accurate calcul
tions of the first and second derivatives of the electro
wave function with respect to the nuclear coordinate. Hyll
aas functions are used to expand the functionX(j,R),

X~j,R!5~j221!L/2 exp@2p~j21!#

3(
j 50

CjLL1 j
L ~2p~j21!!. ~39!
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The functionY(h,R) is expanded using Baber and Hass`’s
functions,

Y~h,R!5exp@2ph# (
l 5L

al Pl
L~h!. ~40!

Here Pl
L(h) are associated Legendre polynomials. Us

this method we were able to obtain electronic wave functi
and potential energy surfaces with accuracy of 11 to 15
nificant digits.

In the next step, all the coupling matrix elements th
appear in Eq.~32! were separated into integrals overj times
integrals overh. The expansions of the electronic wave fun
tionsX(j,R) andY(h,R) were used to calculate the variou
integrals semianalytically. For integrals involving the switc
ing functions, the integration was performed numerica
When possible, the integrals were tested using identi
specified in Ref. 28, and accuracy of 9 to 14 significant dig
was obtained.

2. The choice of the switching function

The switching function was determined using t
method of Thorson and co-workers.37,38 This method allows
for both state-independent and state-dependent switc
functions. In our calculations, we found implementation
the state-dependent switching function to be problemati28

hence we used the parameterb(R) that was optimized for the
ground state. An analytic function,f (h,R)5tanh@b(R)Rh#,
was chosen for the switching function, whereb is a function
of the internuclear distanceR. The switching functionf is
independent ofj andx. The specific choice of the paramet
b(R) was made by an optimization procedure that sign
cantly reduced the magnitude of the corrected coupling
trices of the ground state to higher lying states as compa
with the BOBS coupling matrices.b(R) was determined em
pirically on a grid of points inR, and was then interpolate
to obtain its value for any givenR.

3. Diagonalization of the Hamiltonian

The radial equation resulting from the coupled equatio
@Eq. ~32!# was solved using a Fourier grid Hamiltonia
discrete variable representation~FGH-DVR! method.39–41

For the purpose of these calculations, the method was
eralized to treat first derivative coupling terms. Furthermo
the method was formulated in a manner that is explic
Hermitian and that does not involve products of operat
that are difficult to evaluate analytically. The issue of herm
ticity is crucial for these sort of calculations.29 Ignoring this
issue can result in significant numerical problems. A non
ear grid in the scattering coordinate was used,42 in order to
sample long range potentials with higher accuracy.

V. RESULTS AND DISCUSSION

A. Calculations of the coupling matrices

About 20 years ago, Ponomarev and co-workers p
lished a series of papers on the use of BO basis function
calculate nonadiabatic matrix elements of the three-b
problem.43–45 In the third paper they presented figures of t
g
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various matrix elements resulting from applying the BOB
theory. Their results, although correct mathematically,
not incorporate the correct physics associated with the
tion of the electron with the nuclei asymptotically. A fe
years later, they performed some modifications to the BO
theory;5 however, their generalized model did not solve
the problems arising from the BOBS theory, and was
applied to the calculations of bound-state energies of m
lecular hydrogen ion. Since then, various methods have b
developed to calculate vibronic energies of the ground s
of H2

1 ,18,19but none of these methods was used to determ
correct nonadiabatic matrix elements. Moreover, some
these methods are based on transformations of the Ha
tonian such that the original meaning of the coupling ma
ces is lost.19 Therefore, it is important to determine thes
matrix elements and understand their behavior as a func
of internuclear distance. Figure 3 presents the potential
ergy surfaces of H2

1 and its isotopic variants, for states wit
quantum numbersn51...4,L50. Figure 4 presents severa
matrix elements of the radial part of the first derivative m
trix P¢ for HD1. One important thing to note here is that
large internuclear separation, all matrix elements vanish. F
ure 5 presents the BOBS results@the radial part of the matrix
P¢ , Eq. ~A7!#, for the same matrix elements presented in F
4. In addition, Fig. 6 shows BOBS results of the radial p
of the matrix P¢ , that couple gerade and ungerade sta
These matrix elements vanish identically in the corr
theory. Figure 7 presents few matrix elements of the rad
parts of the matricesP¢ andP¢ . The main difference betwee
the BOBS results and the MBOBS results is the asympt
limit of the matrix elements, as is evident from Fig. 7.
addition, the matrix elements ofP(R) are smaller in magni-
tude as compared with the matrix elements ofP(R). These

FIG. 3. Potential energy curves of H2
1 and its isotopic variants for variouss

states. United atom limit quantum numbers are used to designate state

FIG. 4. Matrix elements of the MBOBS radial first derivative matrix calc
lated for HD1.
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FIG. 5. Matrix elements of the BOBS radial first derivative matrix calc
lated for HD1.

FIG. 6. Matrix elements of the BOBS radial first derivative matrix for HD1,
for various gerade-ungerade states.

FIG. 7. Comparison between matrix elements of the BOBS radial first
rivative matrix and the MBOBS radial first derivative matrix for HD1, for
varioussg states.

FIG. 8. Matrix elements of the MBOBS second derivative matrix calcula
for HD1.

FIG. 9. Matrix elements of the BOBS second derivative matrix calcula
for HD1.
results suggest that convergence with respect to the basi
size can be much faster in the MBOBS method. Vario
matrix elements of the matrixB̃ @Eq. ~B5!# are plotted as a
function of internuclear distance in Fig. 8. As expected,
ymptotically, all matrix elements vanish. The result of t
BOBS theory for the second derivative coupling matrix a
presented in Fig. 9. A comparison with the second deriva
matrix B̃0 of the BOBS theory@Eq. ~A10!# is given in Fig.
10. Our calculations show that the coupling matrix eleme
of the matrices discussed above for states other than
ground state behave similarly, and are therefore not sho
here.

Calculations of the off-diagonal elements of the electr
reduced mass matrixI are cumbersome, and require ad
tional effort. The diagonal elements of the matrixI are
shown in Fig. 11.

B. Calculations of transition energies for HD 1

Of all isotopic equivalents of H2
1 , HD1 is the one which

experimentalists study most.18 Hence, we focus our reporte
results on the HD1 transition energies for which experimen
tal measurements exist. Convergence as a function of
DVR parameters was examined. The integration region w
RP@0.5,100# Bohr, and 150 grid points were used with
nonlinear grid. With these parameters, the resulting bo
states are believed to be accurate to at least nine signifi
digits. Table I presents results of Born-Oppenheimer, ad
batic and two-state nonadiabatic calculation of the transit
frequencies of HD1 and their comparison to experiment
values. The BO results refer to the electronic Hamiltonia
h052(1/2me)¹g

21V, whereme , the electron mass, is take
as unity. The two-state nonadiabatic calculation was p
formed within the ground state manifold of HD1, meaning

-

d

d

FIG. 10. Comparison between matrix elements of the BOBS second de
tive matrix and the MBOBS second derivative matrix for HD1, for various
sg states.

FIG. 11. Diagonal matrix elements of the reduced electronic mass matrix
HD1 for varioussg states.
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TABLE I. BO, adiabatic, nonadiabatic two-state, radiatively and relativisitically corrected nonadiabatic
state and experimental transition frequencies of HD1 in cm21. Percent difference refers to the differenc
between the radiatively and relativisitically corrected two-state nonadiabatic calculations and experi
values. Experimental values are taken from Ref. 16.

Transition BO Adiabatic Two-state Corrected two-state Experiment % differen

1-0P~1! 1869.7222 1869.1685 1869.1683 1869.2044 1869.1340 0.0038
1-0P~2! 1824.1013 1823.5666 1823.5664 1823.5453 1823.5330 0.0007
1-0P~3! 1777.0063 1776.4916 1776.4914 1776.4717 1776.4590 0.0007
2-1R~0! 1857.3311 1856.8028 1856.8025 1856.7798 1856.7780 0.0001
3-2R~0! 1762.0999 1761.6312 1761.6309 1761.6106 1761.6160 0.0003
3-2R~1! 1798.0181 1797.5370 1797.5366 1797.5153 1797.5220 0.0004
3-2R~2! 1831.5890 1831.0970 1831.0967 1831.0744 1831.0830 0.0005
3-2P~2! 1642.5451 1642.1220 1642.1217 1642.1047 1642.1080 0.0002

17-14R~0! 1812.5097 1813.8616 1813.8194 1813.8401 1813.8520 0.0007
17-14R~1! 1818.8475 1820.2173 1820.1737 1820.1947 1820.2090 0.0008
17-14R~2! 1818.8154 1820.2107 1820.1651 1820.1865 1820.1990 0.0007
17-14R~3! 1812.2306 1813.6596 1813.6110 1813.6333 1813.6440 0.0006
17-14R~4! 1798.9062 1800.3775 1800.3249 1800.3484 1800.3580 0.0005
17-14R~5! 1778.6472 1780.1698 1780.1118 1780.1368 1780.1450 0.0005
17-14P~1! 1781.4424 1782.7810 1782.7397 1782.7606 1782.7720 0.0006
17-15R~7! 1077.6606 1078.8992 1078.8337 1078.8557 1078.8530 0.0003
17-15P~1! 1091.1578 1092.1390 1092.1051 1092.1212 1092.1240 0.0003
17-15P~2! 1070.5964 1071.5774 1071.5432 1071.5598 1071.5610 0.0001
17-15P~3! 1046.2704 1047.2562 1047.2211 1047.2382 1047.2390 0.0001
17-15P~5! 986.9302 987.9402 987.9014 987.9198 987.9170 0.0003
17-15P~6! 952.1780 953.2075 953.1657 953.1851 953.1800 0.0005
18-16R~0! 925.3510 926.5513 926.4805 926.5012 926.4900 0.0012
18-16R~1! 931.0682 932.2883 932.2141 932.2351 932.2240 0.0012
18-16R~2! 932.0357 933.2822 933.2027 933.2242 933.2130 0.0012
18-16R~3! 928.0434 929.3232 929.2362 929.2586 929.2470 0.0012
18-16R~4! 918.8643 920.1852 920.0873 920.1107 920.1000 0.0012
18-16R~5! 904.2475 905.6179 905.5046 905.5293 905.5190 0.0011
18-16R~6! 883.9049 885.3348 885.1985 885.2248 885.2180 0.0008
18-16P~1! 900.4452 901.6245 901.5558 901.5766 901.5650 0.0013
18-16P~2! 881.6168 882.7943 882.724 882.7454 882.7310 0.0016
19-16P~6! 1035.2059 1037.2543 983.6407 1036.9731 1036.9610 0.0012
19-16P~7! 981.9418 984.0473 1036.9335 983.6823 983.6930 0.0011
20-17R~0! 916.6325 918.9213 918.1018 918.1436 918.1020 0.0045
20-17R~1! 914.0502 916.3737 915.4529 915.4955 915.4760 0.0021
20-17R~2! 903.4980 905.8698 904.7563 904.8000 904.8330 0.0036
20-17R~3! 884.5929 887.0288 885.5384 885.5838 885.7490 0.0186
20-17P~1! 899.0152 901.2715 900.4973 900.5387 900.4880 0.0056
20-17P~2! 879.2274 881.4851 880.6678 880.7095 880.6680 0.0047
21-17R~0! 1003.7145 1006.8727 998.2631 998.3238 998.5330 0.0209
21-17R~1! 995.2344 998.4298 988.0571 988.1186 988.9930 0.0884
21-17R~2! 975.6874 978.9352 965.7496 965.8123 967.8110 0.2065
21-17P~1! 989.0216 992.1458 984.3439 984.4040 984.3300 0.0075
21-17P~3! 933.4837 936.6266 926.2577 926.3192 927.1920 0.0941
21-17P~4! 890.4729 893.6457 880.4657 880.5284 882.5230 0.2260
22-17R~0! 1018.0736 1021.6011 1006.8769 1006.9413 1006.9650 0.0024
22-17P~1! 1005.1215 1008.6131 994.1299 994.1940 994.1120 0.0082
22-17P~2! 980.6685 984.1649 969.4429 969.5072 969.5300 0.0024
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the states 1ssg and 2psu were included. For simplicity,
terms proportional to the difference («k2«k8) in Eq. ~33!
were neglected in calculations of the off-diagonal matrix
ements of the expression (2(1/2m)B̃1I ). This approxima-
tion is fully justified asymptotically, since the energies a
degenerate. Table I demonstrates the good agreemen
tween the two-state nonadiabatic results and experiment
average discrepancy is of order 0.015%. In order to impr
the accuracy of the calculations, more states should be
cluded in the calculation, includingP states.16 In addition, a
complete calculation of theI matrix will increase the accu
racy.
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Relativistic corrections are found using a nonrelativis
zeroth-order Hamiltonian and first-order perturbation theo
The perturbation operator is given by

H rel5a2H 2
1

2 F«~R!1
1

r A
1

1

r B
G2

1
p

2
@d~r A!1d~r B!#J .

~41!

Here«(R) is the BO energy,a is the fine structure constan
a5e2/(\c), andd is the Dirac delta function. For each v
bronic level, the relativistic correction is obtained as a d
ference between the energies calculated with and without
relativistic Hamiltonian. These are considered rather accu
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and well established. Radiative corrections are based on
culations of the Bethe logarithm.16,19Like the relativistic cor-
rections, radiative corrections are obtained from calculati
of the vibronic energies with and without the necessary c
rections. In our calculations, radiative and relativistic corr
tions were taken as per reference16 and added to the two-stat
results.

VI. CONCLUSIONS

In this paper, the modified Born-Oppenheimer basis
~MBOB! method4 was developed and used to carry out c
culations of the bound-state rovibronic energies of the hyd
gen molecular ion and its isotopic variants. The issue of h
miticity was specifically addressed, and the equations w
derived in an explicitly Hermitian form. The method wa
tested numerically and accurate results were obtained, sh
ing an average error of calculated transition energies w
respect to experimental results of 0.015%. The diagonal
tion of the nuclear Hamiltonian was performed using a F
rier grid Hamiltonian-discrete variable representation~FGH-
DVR! method, which we generalized for this purpose
include a nonlinear grid and first derivative coupling term

The derivation and calculations have led to the followi
conclusions:

~a! The modified Born-Oppenheimer basis set method
useful method that provides deep insight into the c
pling matrices involved in electronic transitions. It h
been shown to be effective in predicting the corre
behavior of the coupling matrices, and gave promis
results for the transition energies of HD1 within the
ground state manifold.

~b! The matrix elements of the coupling matrices result
from the MBOBS method are smaller in magnitude
compared with the corresponding matrix elements
the BOBS theory. This may lead to faster convergen
with regard to the number of basis states included
the expansion as compared with the original BO
method.

~c! The expansion in terms ofAm/m of the Hamiltonian,
which was used in the derivation of Eq.~23!, is such
that hermiticity of the nuclear Hamiltonian matrix
not guaranteed.4,28 In Ref. 28, it was shown that thi
sort of error can not be ignored for the problems trea
here. Consequently, the method was simplified
means of a state-independent scattering coordinate.
other solution to the problem could be the addition
higher terms to the expansion of the Hamiltonia
However, this adds to the complexity of the alrea
complicated formulas. Thorson and co-workers ha
argued that probability is conserved even when
Hamiltonian is not Hermitian.37,38 However, it is not
clear that the proof given by Delos and Thorson for t
statement46 is valid in the general case presented he

~d! The use of a state-independent switching function s
plifies the calculations significantly, and leads to acc
rate results. This conclusion is supported by the rev
of Errea and co-workers8 which shows that in a semi
al-
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classical theory, the use of common translation fact
as opposed to state-dependent translation factors l
to faster convergence.

Improvement of the method developed here can be
ried out along the following lines:

~a! Calculation of the off-diagonal elements of theI matrix
will contribute to increased numerical accuracy of t
calculations. Furthermore, the correct value of the o
diagonal matrix elements of the matrixI will allow the
correct estimation of the magnitude of the gerad
ungerade coupling terms for HD1.

~b! Calculations of angular coupling terms will open th
way to calculate vibronic energies of excited states.

~c! Optimization of the computer codes to use le
memory, so that larger basis set sizes could be use
desirable.

~d! Generalizations of the formulas to include derivativ
of the switching function will increase the accuracy
the calculations and possibly fix some of the symme
problems when a state-dependent switching function
used.

~e! Finally, this method can be used to calculate vibron
energies of excited states~e.g., the 3dsg state!. These
are expected to be sensitive to the nonadiabatic c
pling terms, and to the best of our knowledge, calcu
tions beyond the adiabatic approximation were ne
performed for these states.

In the adiabatic BO representation, dynamics occurs
cause of nonadiabatic transitions induced by the nuclear
netic energy operator; all other parts of the Hamiltoni
~e.g., fine and hyperfine structure! are incorporated into the
determination of the adiabatic potential energy surfac
Hence, in order to do dynamics, it is essential to calculate
nonadiabatic matrix elements arising from the nuclear kine
energy operator. Computer codes that calculate BO ener
and wave functions using configuration-interaction se
consistent-field methods shouldalso incorporate an option to
calculate nonadiabatic coupling matrix elements since all
namics involving curve crossing and asymptotic degener
are induced by these coupling matrix elements.

In the more general case of multielectron systems, e
cient configuration interaction methods for calculating fi
and second nuclear derivative coupling matrix elements,
corporating the asymptotic motion of the electrons with t
nuclei into the calculation of the nonadiabatic matrix e
ments, need to be developed. Asymptotic expansions of
molecular wave functions in terms of atomic basis functio
in powers of 1/R may be sufficient to incorporate th
asymptotic motion of the electrons with the nuclei.

ACKNOWLEDGMENTS

This work was supported in part by grants from t
U.S.–Israel Binational Science Foundation and the Isr
Academy of Science. We thank T. C. Scott for developi
the code to calculate the integrals overh and j needed to
form the electronic matrix elements, and G. Hadinger,



e
fu
ar

ro
n
a

a

m

the
n-

e
m
n

g

s

e

ag-

or-
ari-

-

5819J. Chem. Phys., Vol. 111, No. 13, 1 October 1999 Modified Born-Oppenheimer basis
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APPENDIX A: SEPARATION OF ANGULAR
COORDINATES IN THE BOBS THEORY

Here we apply the separation of angular coordinates
the BOBS total wave function, and derive the radial Sch
dinger equation. This separation is made possible by tra
forming the coordinate system from a space-fixed coordin
system to a molecule-rotating coordinate system.27,28We fur-
ther simplify the resulting coupling matrices by transform
tion of the electronic coordinates (x,y,z) to prolate spheroi-
dal coordinates~j,h,x! defined by

5
x5

1

2
R cosxA~j221!~12h2!

y5
1

2
R sinxA~j221!~12h2!

z5
1

2
Rjh.

~A1!

The total wave function is expanded as follows:

C~rWg ,RW !5
1

R(
L,k

(
MJ

wkL
J ~j,h,R!VMJ ,L

J ~u,f,x!GMJ

J ~R!,

~A2!

where the angular functionsVMJ ,L
J (u,f,x) are given by

VMJ ,L
J ~u,f,x!5

1

2p
exp~ iM Jf!exp~ iLx!dMJ ,L

J ~u!.

The functionsdMJ ,L
J (u) satisfy the differential equation,

H ]2

]u2 1cotu
]

]u
12MJL

cotu

sinu
2

MJ
21L2

sin2 u

1J~J11!J dMJ ,L
J ~u!50, ~A3!

and the recursion relation,

H 6
]

]u
2L cotu1

MJ

sinuJ dMJ ,L
J ~u!

5A~J6L11!~J7L!dMJ ,L61
J ~u!. ~A4!

Using the expansion in Eq.~A2!, integration of Eq.~9! over
l
e

to
-
s-
te

-

angular coordinatesu, f and eventually alsox, is performed.
The Hamiltonian is diagonal in both total angular momentu
J and its projection along the nuclear axisMJ . From the
above separation, one can show that matrix elements of
Hamiltonian which are off-diagonal with respect to the qua
tum numberL ~the eigenvalue ofLz! will vanish unlessL8
5L,L61. This originates from the integration overx after
integration overu andf is carried out. The electronic wav
functions are identified by the united atom limit quantu
numbersn, l andL ~n and l are designated by the commo
index k, for simplicity of notation!.4,30 The Schrodinger
equation for the nuclear problem@Eq. ~9!# can now be writ-
ten in a more explicit way,

2
1

2m F1S d2

dR2 2
J~J11!22L2

R2 D12P(R)
d

dR
1B01D0GGMJ

J

5~1E2U!GMJ

J . ~A5!

Here P(R) is the radial part of the first derivative couplin
term defined by

Pk8L,kL
(R)

5E drWgwk8LF ]

]RU
x,y,z

2
l

2

]

]zGwkL , ~A6!

where thej and h part of the electronic wave function i
denoted bywk,L5wk,L(j,h,R). D0 is the off-diagonal inL
coupling matrix originating from the angular terms of th
nuclear kinetic energy operator2¹R

2/2m and the matrixP¢ .
B0 does not contribute to coupling terms off-diagonal inL,
since the electronic basis functions depend only on the m
nitude of the vectorRW , and not on the anglesu and f. We
now complete the transformation to prolate spheroidal co
dinates. Upon using commutation relations between the v
ous operators,28 the coupling terms in Eq.~A5! can be ex-
pressed by

Pk8k
(R)

5E dtwk8

]

]R
wk1

3

2R
dk8k1

m

2R
~«k82«k!

3E dtwk8r g
2wk1

mlR

4
~«k82«k!

3E dtwk8jhwk , ~A7!

where the subscriptL is omitted for simplicity and the diag
onal element vanishes.47 The matrix elements ofB0 take the
form
Bk8k
0

5E dtwk8

]2

]R2 wk1
3

R E dtwk8

]

]R
wk1

m

R
~«k82«k!E dtwk8r g

2 ]

]R
wk2

m

R S 4

R
«k81«k8D E dtwk8r g

2wk

1
3m

R2 E dtwk8r g
2Vwk2lFmS 2«k81

R

2
«k8D E dtwk8jhwk2

mR

2
~«k82«k!E dtwk8jh

]

]R
wk

2
3m

2 E dtwk8jhVwkG2
l2m

2 F«kdk8k2E dtwk8VwkG , ~A8!

and on the diagonal, one obtains
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Bkk
0 52E dtF]wk

]R G2

1
3

2R2 2
m

R S 4

R
«k1«k8D E dtwkr g

2wk1
3m

R2 E dtwkr g
2Vwk1

l2m

2
@«k1R«k8#. ~A9!

Here the term proportional tol in Eq. ~A8! vanishes due to symmetry.48 The formula forBk8k
0 can be simplified when«k8

Þ«k such that the second derivative of the electronic wave function with respect toR need not be calculated.28

Using Eqs.~A8! and~A7! we are now able to derive the following expression for the matrixB̃0 that appears in the radia
Eq. ~13!,

B̃k8k
0

~k8Þk!52E dt
]wk8
]R

]wk

]R
1

3m

R2 E dtwk8r g
2Vwk1

m~«k82«k!

2R E dtr g
2S wk8

]wk

]R
2

]wk8
]R

wkD
2

m

2R2 @R~«k8
8 1«k8!14~«k81«k!#E dtwk8r g

2wk2mlH F ~«k81«k!1
R

4
~«k8

8 1«k8!G E dtwk8jhwk

2
3

2 E dtwk8jhVwk1
R

4
~«k82«k!F E dt

]wk8
]R

jhwk2E dtwk8jh
]wk

]R G J 1
ml2

2 E dtwk8Vwk . ~A10!

On the diagonal,B̃kk
0 5Bkk

0 . Equation~A10! is general, and is valid also in the case of degeneracy. Moreover, using
formula, one need not calculate the second derivative with respect toR of the electronic wave function.

Finally, the off-diagonal inL coupling matrixD0 is given by

Dk8L8,kL
0

5
1

R2 FdL8,L21A~J1L!~J2L11!2
dL8,L11

R2 A~J2L!~J1L11!GFB k8L8,kL1
l

2
A k8L8,kLG

1
1

R2 FdL8,L21A~J1L!~J2L11!1
dL8,L11

R2 A~J2L!~J1L11!GL
3E dtwk8L8S jh1

l

2D @~j221!~12h2!#21/2wkL , ~A11!

where we have defined the following matrix elements:

B k8L8,kL5E dtwk8L8

A~j221!~12h2!

j22h2 S h
]

]j
wkL2j

]

]h
wkLD , ~A12!

A k8L8,kL5E dtwk8L8

A~j221!~12h2!

j22h2 S j
]

]j
wkL2h

]

]h
wkLD

5
mR2

4
~«k82«k!E dtwk8L8A~j221!~12h2!wkL2

1

2 E dtwk8L8@~j221!~12h2!#21/2wkL . ~A13!

The last equation was simplified using commutation relations between the various operators.28
in

he
n-
ed
APPENDIX B: DETAILED DERIVATION OF COUPLING
MATRICES OF THE MBOBS METHOD

1. The first derivative matrix P

Upon separation of angular coordinates, conversion
prolate spheroidal coordinates and using Eqs.~28! and~A7!,
the radial part of the first derivative matrix is obtained,

Pk8k
(R)

5E dtwk8

]wk

]R
1

m~«k82«k!

2R E dtwk8r g
2wk

2
mR

4
~«k82«k!E dtwk8 f jhwk . ~B1!

The diagonal matrix elements vanish,Pkk
(R)50.
to

2. The second derivative matrix B

From Eq.~29! we have

Bk8k5E drWwk8~rW,R!F¹W RurWg
1

f

2
¹W gG2

wk~rW,R!. ~B2!

Basically, this is very similar to the BOBSB0 matrix, when
l is replaced by the negative of the switching function. T
derivation of the matrix elements after integration over a
gular coordinates is thus very simple. The result obtain
after some algebra is
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Bk8k5

¦

E dtwk8

]2

]R2 wk1
3

R E dtwk8

]

]R
wk2

m

R S 4

R
«k81«k8D E dtwk8r g

2wk

1
m

R
~«k82«k!E dtwk8r g

2 ]

]R
wk1

3m

R2 E dtwk8r g
2Vwk

1mF S 2«k81
R

2
«k8D E dtwk8 f jhwk k8Þk

2
3

2 E dtwk8 f jhVwk2
R

2
~«k82«k!E dtwk8 f jh

]wk

]R G
1

m

2 F E dtwk8 f 2Vwk2«kE dtwk8 f 2wkG
3

2R2 2E dtS ]wk

]R D 2

2
m

R S 4

R
«k1«k8D E dtwkr g

2wk

1
3m

R2 E dtwkr g
2Vwk1mF S 2«k1

R

2
«k8D E dtwkf jhwkG k85k

2
3m

2 E dtwkf jhVwk1
m

2 F E dtwkf 2Vwk2«kE dtwkf 2wkG

. ~B3!
th
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,

In the derivation of these formulas, we assumed that
result of operating with¹W g or ¹W R on the switching function
is negligible. Since the switching function becomes a c
stant asymptotically, this approximation is fully justified fo
large R. At small R, this approximation may create sma
errors, but as will be shown later, the asymptotic nature
the coupling matrix elements is the dominant factor in de
mining the bound-state energies. Moreover, this approxi
tion significantly simplifies the derivation and the resulti
formulas. Nevertheless, care must be taken when this
proximation is used.

To within this approximation, one can conclude that t
switching function commutes with the electronic Ham
tonian, f h'h f . Therefore matrix elements of the commut
tor @ f ,h# between electronic basis states should vanish. T
is a valid approximation as long as the two states being
e

-

f
r-
a-

p-

is
in

tegrated over have the same symmetry. But, when diffe
symmetry is involved and the states are not degenerate
ymptotically~e.g., the states 1ssg and 3psu!, the asymptotic
result for the matrix element of the commutator
*dtw1ssg

@ f ,h#w3psu
→«3psu

(`)2«1ssg
(`), which is a

constant different than zero.
For an explicitly Hermitian form of the radial equation

the relevant matrix isB̃5B2(d/dR)P(R), notB. Using Eqs.
~B1!, ~B3! and the approximation

E dtwk8 f 2hwk'
1

2 F E dtwk8 f 2hwk1E dtwk8h f2wkG
5

1

2
~«k81«k!E dtwk8 f 2wk , ~B4!

we obtain a symmetric expression forB̃,
B̃k8k5Bk8k2
d

dR
Pk8k

(R)
52E dt

]wk8
]R

]wk

]R
1

3m

R2 E dtwk8r g
2Vwk1

m~«k82«k!

2R E dtS wk8

]wk

]R
2

]wk8
]R

wkD r g
2

2
m

2R2 @R~«k8
8 1«k8!14~«k81«k!#E dtwk8r g

2wk

1
m

2 F E dtwk8 f 2Vwk2
1

2
~«k81«k!E dtwk8 f 2wkG1mS «k81«k1

R

4
~«k8

8 1«k8! D E dtwk8jh f wk

2
3m

2 E dtwk8jhV fwk1
mR

4
~«k82«k!E dtjh f S ]wk8

]R
wk2wk8

]wk

]R D . ~B5!

3. The electron reduced mass matrix I

The matrixI is defined in Eq.~30!, and derived in detail in Appendix C.
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4. The angular coupling matrix D

The matrixD is constructed by operating with¹R
2 and¹W g•¹W R on the angular functionsVMJ ,L

J . Inserting the switching

function as a coefficient of¹W g•¹W R ~in analogy withl in the BOBS theory!, results in the angular contributions of the matr

P¢ and the nuclear kinetic energy operator. We thus obtain

Dk8L8,kL5
1

2p
~dL8,L111dL8,L21!(

MJ

E dxdudfE dtwk8L8VMJ ,L8
J F¹R

21
f

2
¹W g•¹W RGwkLVMJ ,L

J . ~B6!

The factor of 1/2p compensates for the extra 2p factor contained indt. After some algebra, we find

Dk8L8,kL5
1

R2 FdL8,L21A~J1L!~J2L11!2
dL8,L11

R2 A~J2L!~J1L11!GFB k8L8,kL
f

2
1

2
A k8L8,kL

f G
1FdL8,L21A~J1L!~J2L11!1

dL8,L11

R2 A~J2L!~J1L11!G L

R2

3E dtwk8L8S jh2
f

2D @~j221!~12h2!#21/2wkL , ~B7!

where@compare Eqs.~A12! and ~A13!#,

B k8L8,kL
f

5E dtwk8L8

A~j221!~12h2!

j22h2 f S h
]

]j
wkL2j

]

]h
wkLD , ~B8!

and

A k8L8,kL
f

5E dtwk8L8

A~j221!~12h2!

j22h2 f S j
]

]j
wkL2h

]

]h
wkLD

5
mR2

4
~«k82«k!E dtwk8L8A~j221!~12h2! f wkL ~B9!

2
1

2 E dtw8,L8@~j221!~12h2!#21/2f wkL . ~B10!

The last equation was simplified using commutation relations.28
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APPENDIX C: DETAILED DERIVATION OF THE
MATRIX I

Here we derive an expression for the Hermitian mat

@2(1/2m)B̃1I #. According to Eq.~30! the matrix element
of the I matrix is given by

I k8k52
m

m F2
1

2m
^k8uS f 1l

2 D 2

¹g
2uk&

1^k8usW•S ¹W RurWFV1
1

RG D uk&G
52

m

m Fm

2
^k8u@h,sW#2uk&1^k8usW•S ¹W RurWFV1

1

RG D uk&G
5

1

2m (
j

AW k8 jAW jk2
m

2m
^k8usW•S ¹W RurWFV1

1

RG D uk&

2
m

2m
^k8uS ¹W RurWFV1

1

RG D •sWuk&, ~C1!

where derivatives of the switching function have been c
sistently neglected. In the last equation, we symmetrized
operator in order to make it Hermitian.7 We also used the
-
e

definition of the matrixAW k8k52m^k8u@h,sW#uk&. Using Eq.
~2!, the identity (¹W RurWV)5@¹W R ,h#, the definitions for the
matrix elements ofA¢ andP¢ and inserting a complete set o
states, we find

I k8k5
1

2m (
j

AW k jAW jn2
m

2m S «k8
8 1«k82

2

R2D sk8k
R

2
m

2m
~«k2«k8!(

j
@sWk8 j•PW jk1PW k8 j•sW jk#

1
1

2m (
j

@AW k8 j•PW jk1PW k8 j•AW jk#. ~C2!

SincesWk j5sW jk , PW jk52PW jk andAW k j52AW jk , Eqs.~C2! rep-
resent the Hermitian matrix, but implementation of this fo
mula requires the use of a complete set of states. Never
less, a complete set of states is not needed when a form
for (2(1/2m)B̃1I ) is considered. Recalling the definition o
B @using Eqs.~28! and ~B2!#,
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Bk8k5^k8uS ¹W R1
f

2
¹W gD 2

uk&

5(
j

^k8uS ¹W R1
f

2
¹W gD u j &•^ j uS ¹W R1

f

2
¹W gD uk&

5(
j

~PW k8 j1AW k8 j !•~PW jk1AW jk!1¹W R•~PW k8k1AW k8k!.

~C3!

We now define

B̃k8k5Bk8k2¹W R•~PW k8k1AW k8k!

5(
j

~PW k8 j1AW k8 j !•~PW jk1AW jk!. ~C4!

Adding this result to Eq.~C2! results in

2
1

2m
B̃k8k1I k8k

52
1

2m (
j

PW k jPW jn2
m

2m S «k8
8 1«k82

2

R2D sk8k
R

2
m

2m
~«k2«k8!(

j
@sWk8 j•PW jk1PW k8 j•sW jk#. ~C5!

This equation gives a Hermitian expression for (2(1/2m)B̃
1I ). A complete basis set ofj states is still required in this
expression, but this requirement can now be easily remo
by noting that

(
j

@sWk8 j•PW jk1PW k8 j•sW jk#

5^k8usW•F¹W R2
l

2
¹W gG uk&1^k8uF¹W R2

l

2
¹W gG•sWuk&. ~C6!

Finally, we obtain

2
1

2m
B̃k8k1I k8k

52
1

2m
B̃k8k

0
2

m

2m S «k8
8 1«k82

2

R2D sk8k
R

2
m

2m
~«k2«k8!

3H ^k8usW•S ¹W R2
l

2
¹W gD uk&1^k8uF¹W R2

l

2
¹W gG•sWuk&J .

~C7!

This expression is Hermitian and equivalent to Eq.~33!.
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