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For focused pulses of light in isotropic nonlinear media, third-harmonic generation can be strongly affected
by group-velocity mismatch between the fundamental and third-harmonic. There is a characteristic time de-
termined by the group-velocity mismatch and the Rayleigh range of the focused pulse. The dynamics depend
on two dimensionless quantities, namely the ratio of the characteristic time to the pulse duration and the
phase-velocity mismatch times the Rayleigh range. Pulses shorter than the characteristic time have physics
described by simple analytic formulas. Pulses near the characteristic time have an intermediate behavior given
by an explicit but more complicated formula. Pulses longer than the characteristic time tend to the continuous-
wave case.
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I. INTRODUCTION

Third-harmonic generation(THG) by focusedpulsesof
light may, for sufficiently long pulses, be accurately de-
scribed by a continuous wave(cw) beam model[1–4]. We
present a quantitative analysis of the limits of the validity of
the cw approximation for THG by focused pulses, and elabo-
rate the physics in regimes where the cw approximation fails.
For the instances of THG by focused pulses simulated nu-
merically in Ref.[5], the group-velocity mismatch between
the fundamental and third-harmonic(TH) was the most sig-
nificant source of divergence from the conventional cw beam
model [1,2]; Kerr and Raman effects, and higher-order dis-
persion and diffraction, were much weaker perturbations.
Consequently, we formulate a model for THG by a pulse,
including only the most essential effects: phase-velocity mis-
match, group-velocity mismatch, diffraction, and THG.
Omission of Kerr effects and other nonlinearities makes the
problem much more tractable, even allowing analytic solu-
tions. Two dimensionless parameters determine the nature of
the dynamics: the first is a function of the group-velocity
mismatch, the Rayleigh range(or the tightness of the focus-
ing), and the pulse duration; the second is the phase-velocity
mismatch times the Rayleigh range. If the first parameter is
small (short pulses) or large (long pulses), the results are
especially simple. In the intermediate case, the results are
more complex, though still analytic. We apply the same
analysis to higher-harmonic generation.

Harmonic generation is one of the basic nonlinear optical
effects, and is the subject of a great deal of study. Second-
harmonic generation(SHG), which requires a material with-
out parity inversion symmetry, has garnered more attention
than THG, because it is a lower-order effect. The basic SHG
dynamics in waveguides, and also Kerr and other perturba-
tions, may be found in Ref.[6], and citations therein. Exact
solutions for SHG by Gaussian(i.e., focused) cw beams have
been known since 1966[2,7]. Work on SHG by focused
pulses, including some exact solutions, may be found in Ref.
[8] and citations therein. Solutions to THG by focused cw
beams[1,2] were found a few years after those of SHG. The
literature on THG in waveguides, and for effective plane
waves in crystals, for which diffraction is unimportant, is too

extensive to summarize easily here. Some notable work on
THG related to that presented here is as follows. Reference
[9] finds group-velocity mismatch effects on THG in a fiber,
and also includes phase-velocity mismatch and Kerr effects;
Ref. [10] considers spectral broadening of THG pulses re-
sulting from phase-velocity mismatch and Kerr effects; Ref.
[11] examines the consequences of Kerr effects on THG
spectra without any linear mismatch. Reference[12] covers
effective THG via cascaded SHG, including phase- and
group-velocity mismatch, dispersion, and Kerr effects; Ref.
[13] looks at effective THG by cascaded SHG by focused
pulses, including phase-velocity mismatch, Kerr effects, and
parametric down-conversion; Ref.[14] deals with THG via
cascaded SHG, with phase-velocity matching, group-velocity
mismatch, and dispersion. To our knowledge, effects of
group-velocity mismatch on THG by focused pulses(i.e.,
where diffraction is important, and where the cw approxima-
tion is insufficient) have not been studied.

II. MODEL

Equations that minimally describe pulses of light com-
prised of a fundamental frequency and its TH in a bulk iso-
tropic medium are
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whereu1st ,x,y,zd is the fundamental slowly varying enve-
lope, with carrier wave expfisk1z−v1tdg, andu3st ,x,y,zd is
the envelope of the TH, with carrier wave expfisk3z
−3v1tdg. The respective wave numbers arek1;nsv1dv1/c
and k3;ns3v1d3v1/c, and the reciprocal group velocities
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are k18;sd/dvdfnsvdv /cgv=v1
and k38;sd/dvdfnsvdv /

cgv=3v1
, with nsvd the index of refraction. The second de-

rivatives with respect tox and y represent(lowest-order)
diffraction. THG is taken as effectively instantaneous. Dis-
persion, higher-order diffraction, and Kerr and other nonlin-
ear effects are neglected. Equations(1) are appropriate for
paraxial pulses that are not so intense that Kerr effects be-
come important, for which the percentage of the energy in
the third-harmonic band remains relatively small, and for
which dispersion is relatively unimportant. When a relatively
small part of the energy is in the TH, the rightmost term in
Eq. (1a)—a xs3d form of parametric down-conversion, or a
downshifting counterpart to THG—may be dropped(making
the equations non-Hamiltonian), which we do henceforth.
Equation(1a) has an exact solution with a spatially Gaussian
profile, and an arbitrary temporal profile translating at group
velocity s1/k18d,

u1st,x,y,zd = fst − k18zd
Îk1zR/p

zR + iz
expS−
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x2 + y2

2
D .

s2ad

We assume that the temporal profile is Gaussian,

fstd =
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expS−

1

2

t2

tp
2D . s2bd

The coefficients in Eqs. (2) give normalizion
eeeuu1u2dtdxdy=E1, which is proportional to the pulse en-
ergy. Without loss of generality, the Rayleigh range(or half
the confocal parameter), zR, is taken to be positive, and the
phase of the fundamental is chosen to be zero at the focus
z=0.

III. SOLUTION FOR THE THIRD-HARMONIC PULSE

To convert the problem from a partial differential equa-
tion to an ordinary differential equation, insert the fundamen-
tal pulse(2) into the equation for the TH(1b), and Fourier-
transform

fsv,kx,kyd = Fhfst,x,ydj

; s2pd−3/2E E E
−`

`
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− kyydgdtdxdy

from real space to momentum space,
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This inhomogeneous first-order linear differential equation can be integrated. We choose a constant of integration such that the
TH field is zero atz=z0. Physically, this describes a fundamental pulse incident on a nonlinear medium at distancez=z0. The
result is a solution for the TH pulse in momentum spacesv ,kx,ky,zd; it is also useful to have the solution inverse Fourier-
transformed to real space,

u3sv,kx,ky,zd = ixTHGs3v1/cd2
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u3st,kx,ky,zd = ixTHGs3v1/cd2
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All forms (4) of the solution are equivalent. This is the gen-
eral and mathematically exact solution for a TH field due to
a fundamental pulse of the form(2) in Eqs. (1) without the
parametric down-conversion term.

IV. ANALYSIS

The physics may be elucidated by examining some limits
and approximations. The TH far field is, in general, not an
exact Gaussian, either in time or in space. The pulse takes a
temporally Gaussian form in the case of perfect group-

velocity matching,k18=k38. The pulse takes a spatially Gauss-
ian form in the case of perfect phase-velocity matching,
3k1=k3. Otherwise, with a nonvanishing phase-velocity mis-
match, the radial momentumskx,kyd in the integrand gives
the TH field a more complex form. For many purposes, how-
ever, the pulse is very close to being spatially Gaussian, and
we may make the approximations3k1−k3dskx

2+ky
2d→0. In-

deed, it is conventional to do so[1,2]. In this approximation,
the TH field can be expressed in real space and/or momen-
tum space,
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Three limits have analytic solutions. One is propagation from
a near field to a near field[2]. Here, diffraction plays no
important part, and the pulse approaches a plane wave. In
this case, none of the methodology developed here is rel-
evant. Second is the limit in which the pulse starts and ends
far away from the focus, or far-field to far-field propagation.
Here, integrals may be considered as starting and ending at
infinity, and they may be analytically integrated. Third is
propagation from a far-field to a focus, or vice versa. In this
limit, the integrals may be transformed into special func-
tions.

A. Far-field to far-field propagation

In the limit of far-field to far-field propagation(z0!−zR
andz@zR), the integral(4a) may be solved because the in-
tegrand is analytic except for a second-order pole atz= izR,

u3sv,kx,ky,zd = ixTHGs3v1/cd2
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with generalized dimensionless mismatch going to

f = fsv,kx,kyd ; Fs3k1 − k3dS1 +
kx
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2s3k1dk3
D

+ sk18 − k38dvGzR, s6bd

andH is the step function,

Hsxd = H1, x ù 0

0, x , 0.
J s6cd

In the far-field limit, when the TH field is expressed as a
function of momentum spacesv ,kx,kyd, there is az depen-
dence in the phase, but not in the magnitude. The TH pulse
thus continues to propagate—with group velocity 1/k38—and
to diverge, but in an essentially trivial manner. Dependence
of the TH power on the dimensionless mismatchf is shown
in Fig. 1. The spectrum vanishes at negativef, peaks atf
=1, and drops off at largef. The nontrivial dynamics occur
only in the near or intermediate field. Real-space expressions
are not available in as simple a form because the contour
does not vanish at large imaginary values ofz8, or the func-
tion is not meromorphic in real space.

If we neglect spatially non-Gaussian featuresfs3k1

−k3dskx
2+ky

2d→0g, the TH field is given by Eq.(6a), where
the dimensionless mismatch parameter is

f = S1 +
k18 − k38

3k1 − k3
vDs3k1 − k3dzR. s7d

Expressions in terms of time rather than frequency may be
obtained, but not simplified in the same way, since the inte-
grand does not vanish at large imaginary values. Also, the

complexity of these forms make them less useful. The power
spectrum of the TH band is obtained by integrating the in-
tensity over transverse coordinates,

Ps3v1 + vd =E E uu3sv,kx,ky,zdu2dkxdky

=E E uu3sv,x,y,zdu2dxdy

= FxTHGs3v1/cd2
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wheref is given by Eq.(7).
Three parameters determine thequalitative properties of

the TH output: the fundamental pulse widthtp, the character-
istic time scale

tchar; sk18 − k38dzR, s9d

which can be either positive or negative, and the phase-
velocity mismatch times the Rayleigh range,s3k1−k3dzR,
which is dimensionless. The ratio of the first two parameters
is dimensionless, and it, together with the third parameter,
are the two dimensionless parameters that determine the dy-
namics.

1. Short duration pulses

When the fundamental pulse is much shorter than the
magnitude of the characteristic time scale,tp! utcharu= uk18
−k38uzR, the power spectrum in the region of the TH is essen-

FIG. 1. Power spectrum of the TH pulse, after far-field to far-
field propagation: dependence on the dimensionless mismatchf
=hs3k1−k3df1+skx

2+ky
2d / s6k1k3dg+sk18−k38dvjzR, holding other pa-

rameters constant,P~f2 exps−2fdHsfd. Here, k1 and k3 are the
wave vectors in the fundamental and TH,k18 andk38 are their deriva-
tives with respect to frequency,v is frequency within the TH,kx

andky are transverse wave numbers,zR is the Rayleigh range, and
H is the step function.
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tially determined by the medium and the Rayleigh range of
the pulse, while the fundamental pulse width only scales the
entire TH spectrum by a factor. The peak spectral density in
the TH band is then

Ppeak
THG = FxTHGs3v1/cd2

3k1k3
G216Îp

e2 expF−
tp
2s3k1 − k3d2
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at

vpeak
THG = 3v1 −

3k1 − k3

k18 − k38
. s10bd

The spectral width of the TH band is approximately given by

DvTHG =
1

uk18 − k38uzR

, s10cd

and the temporal width of the TH pulse is

DtTHG = uk18 − k38uzR. s10dd

The energy in the TH pulse is the integral over the TH power
spectrum,

E3 =E Ps3v1 + vddv = FxTHGs3v1/cd2
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The assumption that dispersion is unimportant will break
down for sufficiently short pulses. The results in this subsec-
tion hold for pulses that are short compared to the character-
istic time of the focused pulse in the medium,uk18−k38uzR, but
not so short that the assumption herein that dispersion is
relatively unimportant becomes inappropriate.

2. Long duration pulses

When the fundamental pulse is much longer than the
magnitude of the characteristic time,tp@ utcharu= uk18−k38uzR,
and the phase-velocity mismatch is positive,s3k1−k3dzR.0,
the reverse holds: the TH power spectrum depends essen-
tially on the fundamental pulse, and the properties of the
medium merely scale the entire spectrum up or down by a
factor. The peak spectral density is

Ppeak
THG = FxTHGs3v1/cd2
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at, simply, triple the fundamental frequency,

vpeak
THG = 3v1. s11bd

In the long-pulse limit, the TH power spectrum approaches a
simple Gaussian. The spectral width of the TH pulse is ap-
proximately

DvTHG = Î3/tp, s11cd

and the temporal width of the TH pulse is

DtTHG = tp/Î3. s11dd

The TH pulse energy is obtained by integrating the power
spectrum over the TH band,

E3 =E Ps3v1 + vddv = FxTHGs3v1/cd2
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Perfect group-velocity matching,k18=k38, is subsumed into
this limit: the physics is like that of cw beams, no matter how
short the pulses are.

When the fundamental pulse is long compared to the
magnitude of the characteristic time scale,tp@ utcharu, but the
phase-velocity mismatch is negative,s3k1−k3dzR,0, the far-
field TH energy comes only from the tail of the fundamental
pulse’s frequency distribution. This is because the step func-
tion in the power spectrum(8) totally cuts off light near the
center of the TH band(leaving very little TH energy). The
spectral peak is at

vpeak
THG = 3v1 + F1

4
− s3k1 − k3dzRG k18 − k38

3k1 − k3

3

tp
2 + Ostp

−4d.

s12d

The TH spectral width and maximum are found by inserting
this into the formula for the power spectrum(8). The TH that
reaches the far-field, in this case of negative phase-velocity
mismatch, shows a more pronounced influence due to the
dimensionless mismatch(interference effects) than due to the
fundamental power spectrum.

3. Intermediate duration pulses

When the fundamental pulse is of the same order as the
characteristic time scale, the qualititive properties of the TH
spectrum(8) may depend equally on the material and on the
width of the fundamental pulse. In the general case, the peak
spectral density occurs at

vpeak
THG = 3v1 −
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2
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The spectral and temporal widths of the TH pulse are directly
accessible from Eq.(8). The explicit forms are complex and
opaque, so we do not write them out.

B. Focus to far-field propagation

The TH field that accumulates between a focussz=0d and
a far-fieldsz@zRd can also be solved analytically, but only in
the sense that the integral(4) transforms to an expression
with special functions,
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u3sv,kx,ky,zd = xTHGs3v1/cd2
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where the exponential integral is Eisxd=−e−x
` t−1 exps−tddt,

taking the principal value of the integral[15].
The net TH generated by propagation from a far-field to a

focus is

u3sv,kx,ky,0d = − xTHGs3v1/cd2
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Except for a difference in sign, and the fact that this far-field
to focus result is expressed as the TH at the focus rather than
approaching infinity, this result is similar to Eq.(14a), the
focus to far-field result.

The power spectrum of the TH pulse, either to or from a
focus, is
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Note the implicit frequency dependence viaf. Figure 2
shows the dependence of the TH power spectrum on the
dimensionless mismatchf. Neglecting the frequency depen-
dence due to the finite width of the fundamental pulse, the
maximum power occurs for mismatchfpeak<0.437(in con-
trast tofpeak=1 for the far-field to far-field limit). There is
some spectral density at mismatches that are very large in
either the positive or negative direction(in contrast to the
complete cutoff for negative mismatch in the far-field to far-
field limit), but the amount is relatively small forf&−2 or
f*6.

1. Short-duration pulses

Let us neglect non-Gaussian spatial features,s3k1−k3d
skx

2+ky
2d→0. For very narrow pulses,tp! uk18−k38uzR, the

spectral peak is
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at frequency
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The spectral width is

DvTHG =
2
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the temporal width is

DtTHG = uk18 − k38uzR/2, s16dd

and the total energy in the TH pulse is
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As in far-field to far-field propagation, these results hold for
pulses that are short compared to the magnitude of the char-
acteristic time of the focused pulse in the medium,uk18
−k38uzR, but not so short that dispersion becomes important.

2. Long-duration pulses

When the pulse is wide,tp@ uk18−k38uzR, behavior is like in
the cw limit. The spectral maximum is

FIG. 2. Power spectrum of the TH pulse after focus to far-field
propagation: dependence on the dimensionless mismatchf=hs3k1

−k3df1+skx
2+ky

2d / s6k1k3dg+sk18−k38dvjzR, holding other parameters
constant,P~ u1−ffEisfd+ ipHsfdg /expsfdu2. Here,k1 and k3 are
the wave vectors in the fundamental and TH,k18 and k38 are their
derivatives with respect to frequency,v is frequency within the TH,
kx andky are transverse wave numbers,zR is the Rayleigh range, Ei
is the exponential integral, andH is the step function.
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Ppeak
THG = FxTHGs3v1/cd2

3k1k3
G2 4

p3/2

k1
4E1

3

tp
4 U1 − s3k1

− k3dzR
Ei„s3k1 − k3dzR… + ipH„s3k1 − k3dzR…

expfs3k1 − k3dzRg
U2

s17ad

at frequency

vpeak
THG < 3v1. s17bd

The spectral width is

DvTHG = Î3/tp, s17cd

the temporal width is

DtTHG = tp/Î3, s17dd

and the energy in the TH pulse is

E3 = FxTHGs3v1/cd2

3k1k3
G2 4

Î3p

k1
4E1

3

tp
3 U1 − s3k1 − k3dzR

3
Ei„s3k1 − k3dzR… + ipH„s3k1 − k3dzR…

expfs3k1 − k3dzRg
U2

. s17ed

3. Intermediate duration pulses

The frequency dependence of the general power spectrum
(15) comes from competition between two elements, namely
(i) the Gaussian, which is due to the Gaussian spectrum of
the fundamental pulse, and(ii ) the function of the dimen-
sionless phase mismatchf, which is due to interference. The
first elementtendsto maximize the spectrum atv=0 (within
the TH band), which is the spectral peak for long duration
pulses. The second elementtendsto maximize the spectrum
at v=−0.437s3k1−k3d / sk18−k38d, which is the spectral peak
for short duration pulses. For short and for long pulses, one
of the elements dominates. When the pulse is of intermediate
duration, a small phase mismatch will put the two peaks
close together, and they will merge. A large phase mismatch
will put one of the peaks on the tail of the other, making the
second tendency to peak insignificant. Figure 3 illustrates
several intermediate instances, with pulse duration the same
order as the characteristic time. The TH power spectrum is
shown versus frequency, for a particular group-velocity mis-
match and several phase-velocity mismatches.

V. HIGHER-ORDER HARMONICS

The same analysis may be applied to a system with the
nonlinearity of arbitrary-order harmonic generation. For two
reasons, we will give the basic results, but we will not elabo-
rate on the various limits and approximations. First, even-
order susceptibilities require a medium with spatial inversion
asymmetry. This is usually inconsistent with an isotropic op-
tical medium. Second, lower-order processes in the electric
field strength tend to be the most important in the most com-
monly encountered media and typical intensities. Thus THG

is the most important instance of harmonic generation for
isotropic media. The simplest governing equations for
qth-order harmonic generation are

0 = i
]

]z
u1 + ik18

]

]t
u1 +

1

2k1
S ]2

]x2 +
]2

]y2Du1

+
2psv1/cd2

k1
xqHG expf− isqk1 − kqdzgqu1

*2uq,

s18ad

0 = i
]

]z
uq + ikq8

]

]t
uq +

1

2kq
S ]2

]x2 +
]2

]y2Duq

+
2psqv1/cd2

kq
xqHGexpfisqk1 − kqdzgsu1dq, s18bd

whereuqst ,x,y,zd is the envelope of carrier wave expfiskqz
−qv1tdg, the wave number of the harmonic of orderq is kq

;nsqv1dqv1/c, and the reciprocal group velocity in this
band is kq8;sd/dvdfnsvdv /cgv=qv1

. Other terms are as in
Eqs. (1). Clearly, ionization effects are not included in this
model, and physical situations where ionization occurs must
be treated differently.

Assuming the same fundamental pulse(2) as for THG, the
qth harmonic pulse takes the form

FIG. 3. Spectral density vs frequency, after focus to far-field
propagation, with group-velocity mismatchsk18−k38d and Rayleigh
rangezR such that the characteristic time scale is approximately
equal to the pulse durationtp, and for several values of the phase-
velocity mismatch. The full frequency dependence of the power
spectrum goes as P~exps−tp

2v2/3du1−ffEisfd+ ipHsfdg /
expsfdu2, with Ei the exponential integral andH the step function.
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uqsv,kx,ky,zd = i
sqv1/cd2

qk1kq
xqHG2p/Îq

tp
q−1 Sk1zRE1

p3/2 Dq/2

expF−
tp
2v2

2q
−

zRskx
2 + ky

2d
2qk1

+ iSkq8v −
kx

2 + ky
2

2kq
DzG

3 E
z0

z 1

szR + iz8dq−1 expHiFsqk1 − kqdS1 +
kx

2 + ky
2

2qk1kq
D + sk18 − kq8dvGz8Jdz8. s19d

In the case of far-field to far-field propagation, the integral is
soluble because the integrand is analytic except for a pole of
order sq−1d at z= izR,

uqsv,kx,ky,zd = i
sqv1/cd2

qk1kq
xqHGs2pd2/Îq

sq − 2d!
1

tp
q−1zR

q−2Sk1zRE1

p3/2 Dq/2

3 fq−2 expF− f −
tp
2v2

2q
−

zRskx
2 + ky

2d
2qk1

+ iSkq8v −
kx

2 + ky
2

2kq
DzGHsfd s20ad

with dimensionless mismatch

f = fsv,kx,kyd ; Fsqk1 − kqdS1 +
kx

2 + ky
2

2qk1kq
D + sk18 − kq8dvGzR.

s20bd

In the case of focus to far-field propagation, the integral may
be integrated by parts recursively, until it can be expressed as
a special function,

uqsv,kx,ky,zd

=
sqv1/cd2

qk1kq
xqHG 2p/Îq

sq − 2d!
zR

2

tp
q−1S k1E1

zRp3/2Dq/2

3Fo
n=0

q−3

sq − 3 −nd ! fn −
Eisfd + ipHsfd

expsfd
fq−2G

3expF−
tp
2v2

2q
−

zRskx
2 + ky

2d
2qk1

+ iSkq8v −
kx

2 + ky
2

2kq
DzG .

s21d

The elaboration of the general higher harmonic generation
case to all the various limits is straightforward and lengthy,
so we do not give this explicitly.

VI. CONCLUSIONS

We showed that in third-harmonic generation by focused
pulses, group-velocity mismatch, as well as the familiar
phase-velocity mismatch, can strongly affect the third-
harmonic pulse produced. We limited the analysis to cases in
which dispersion(within the envelope of the fundamental
and third harmonic) and Kerr effects may be neglected.
Whether dispersion and Kerr effects are small enough, com-
pared to effects of phase- and group-velocity mismatch and
of diffraction, will depend on the medium and the duration
and intensity of the pulse.

There is a characteristic time scale determined by the dif-
ference between the group velocities at the fundamental and
its third harmonic, and the Rayleigh range. Pulses with tem-
poral width much greater than the characteristic time scale
behave like continuous-wave(monochromatic) beams;
pulses with temporal width in the range of, or shorter than,
the characteristic time scale exhibit qualitatively different be-
havior. We detailed the behavior qualitatively and
quantitatively—giving analytic solutions—for pulses in
which most of the energy is in the fundamental beam.
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