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Sudden spontaneous acceleration and deceleration
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Richard S. Tasgal,* R. Shnaiderman, and Y. B. Band

Department of Chemistry and Department of Electro-Optics, and the Ilse Katz Center for Nano-Science,
Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

*Corresponding author: tasgal@bgu.ac.il

Received November 5, 2009; revised February 9, 2010; accepted February 21, 2010;
posted March 23, 2010 (Doc. ID 119568); published April 28, 2010

Gap-acoustic solitons (GASs) are stable pulses that exist in nonlinear Bragg waveguides. They are a math-
ematical generalization of gap solitons, in which the model includes the dependence of the refractive index on
the material density. We derive unified dynamical equations for gap solitons along with Brillouin scattering,
which also results from the dependence of the refractive index on the material density. We find accurate values
of the coefficients for fused silica. The analysis of the GAS conserved quantities—Hamiltonian, momentum,
photon energy (or number of photons), and material mass—shows dramatic differences compared to the model
neglecting the dependence of the refractive index on the material density. In particular, subsonic GASs in fused
silica have far more momentum at low velocities than at high velocities. The dependence of the GAS momen-
tum on velocity due to acoustic effects is dramatic up to approximately 1% of the speed of light. These
momentum-connected effects mean that instability of a slow GAS may make it suddenly accelerate to high
speeds, and also that an unstable high-speed GAS can abruptly decelerate to close to zero velocity. The pre-
dictions are confirmed by a direct numerical simulation. © 2010 Optical Society of America

OCIS codes: 060.4370, 060.3735, 230.1040, 190.5530, 290.5830, 190.3100.
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. INTRODUCTION
gap-acoustic soliton (GAS) is an optical and acoustic

tructure that can exist in an optical waveguide with a
ragg grating. The GAS is a generalization of the gap
oliton [1–4], but includes the dependence of the refrac-
ive index on the density of the material. Physically, this
ependence is always present, but is not always included
n the mathematical description. The correct interaction
etween sound and light not only provides generalized
oliton solutions, but also allows an accurate description
f other interactions between light and sound.

The first gap soliton paper did not use the phrase “gap
oliton,” but rather referred to the equations as the mas-
ive Thirring model (MTM) [1]. The solutions were soli-
ons in the strictest sense—the system was shown to be
ntegrable by the inverse scattering method [2,3]. The
oliton frequencies are in the gap between the frequencies
f the two continuous wave (cw) solutions. However, the
oliton frequencies are not all between the maximum of
he lower cw band and the minimum of the upper cw
and. For this reason, some authors prefer the term
Bragg soliton” (see, e.g., [4]).

Independently of the mathematical discovery of gap
olitons, a qualitative description and prediction of the
till theoretical optical gap solitons was made in [5]. Ex-
ct analytical forms for optical gap solitons were found for
nonlinearity with self-phase modulation in addition to

ross-phase modulation. Reference [6] found the solutions
n the exact middle of the bandgap, and [7] found the full
amily of gap soliton solutions. This is not a completely in-
egrable system, and the pulses are solitons in the
roader sense but not in the narrower sense; so they are
ot guaranteed to have the stability MTM solitons.
0740-3224/10/051051-14/$15.00 © 2
All GASs (as well as all optical gap solitons) are a form
f slow (or stopped) light, in the sense that the soliton ve-
ocity is slower than the group velocity of light in the me-
ium. Optical gap solitons have been realized experimen-
ally with velocities as low as 23% of the group velocity (or
6% of the speed of light in vacuum) [8]. This may be com-
ared and contrasted with light that is slow in the sense
hat the group velocity is significantly less than the phase
elocity in the medium, generally due to a steep slope of
he index of refraction with respect to the frequency in the
icinity or a resonance [9–15].

The stability of gap solitons beyond the completely in-
egrable MTM limit (optical gap solitons have nonzero
elf-phase modulation, and so are not MTM) was not im-
ediately clear. Reference [6] showed one direct numeri-

al simulation of a gap soliton collision in which the indi-
idual gap solitons were stable, and the solitons emerged
rom a collision intact but perturbed. Reference [16] per-
ormed variational model calculations of optical gap soli-
ons, which showed some regions where excited modes ex-
st and other regions with instabilities. References
17–19] rigorously showed that optical gap solitons are
table in the top half of the bandgap and unstable in most
f the bottom half of the bandgap. Reference [20] general-
zed the optical gap soliton equations to a model that in-
ludes the dependence of the index of refraction on the
ensity of the material and the phonon-photon interac-
ions that result from it; that is, the effect of light on low
ave number acoustic waves [21], and vice versa, was in-

luded in the model, and generalized “gap-acoustic soli-
on” solutions were found [20]. The GASs are similar to
ptical gap solitons, but they exhibit many intriguing
ovel dynamical properties, especially when the soliton
010 Optical Society of America
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elocities are small. A subset of the GAS model, without
elf-phase modulation, was studied in [22]. Reference [23]
ound solitons in a system with two short-wavelength
ight fields interacting with a long-wavelength electro-

agnetic field; the interaction there is different from that
n [20] or in this work, but there are family resemblances.
eference [24] looked at the interaction of light beams,

.e., propagation in space rather than in time, with sound
aves via electrostriction.
The dependence of the index of refraction on the den-

ity of the material is physically universal. Light inter-
cts with sound waves because the energy density of light
s proportional to the refractive index [25] which, in turn,
epends on the density. The interaction between light and
igh wave number acoustic waves—approximately twice
he wave numbers of light—is called Brillouin scattering
26], and the interaction between light and low wave
umber acoustic waves is generally referred to as elec-
rostriction [27]. Notwithstanding different nomencla-
ures, the two effects have the same physical source. Bril-
ouin scattering can cause light in a medium to create its
wn Bragg reflector, and if the input light is a pulse then
he outgoing reflected pulse can be shortened by this ef-
ect [27–31].

Phonon viscosity can be caused by elastic anharmonic-
ty, Rayleigh scattering, vibrational relaxation, and impu-
ities in the medium [32]; it scales approximately as the
quare of the wave number. It gives rise to damping of
coustic waves and results in a finite frequency spread for
rillouin scattering. Phonon viscosity has been consid-
red in some detail for propagation of trains of optical
olitons and non-solitonic pulses in media without a
ragg lattice [33,34].
This work builds on top of [20], expanding on the physi-

ally most important realization the fused silica. We also
eneralize the model [20] to cover high wave number
Brillouin) acoustic wave interactions as well as low wave
umber (electrostrictive) acoustic waves, including the
erivation of the governing equations for both acoustic
aves in a unified manner.
The outline of this paper is as follows. Section 2 gives

he governing equations for the relevant electromagnetic
nd acoustic fields, along with the values of the coeffi-
ients for the case of fused silica. The derivation of the
overning equations is given in the Appendix A. Section 3
etails the general properties of this system. Section 4
ives the soliton solutions and outlines the stability prop-
rties. Section 5 takes a closer look at the conserved and
uasi-conserved quantities of the system. Section 6 pre-
icts abrupt acceleration and sudden deceleration to zero
elocity, based on the conserved quantities, and confirms
he predictions with direct numerical simulations. Section
contains summary and conclusion.

. GOVERNING EQUATIONS AND
HYSICAL PARAMETERS
ASs exist in a nonlinear optical waveguide with a Bragg
rating along the axis of the fiber or in a bulk medium if
he propagating beams are wide enough so that there are
o complex transverse dynamics. Let us take the Bragg
rating as uniform, with period �Bragg and amplitude of
he variation in the index of refraction �n,

n�z� = n��,W� + �n cos�2�z/�Bragg�, �1�

here the baseline refractive index implicitly allows the
ependence on the frequency of light ��� and on the den-
ity of the material �W�z , t��. Light will be in resonance
ith the grating if it has a wavelength in the medium

wice as long as the Bragg wavelength. At light frequen-
ies in resonance with the Bragg grating, forward-moving
ight will be reflected backward, and backward-moving
ight will be reflected forward. The result will be a band-
ap in the frequency at plus and minus the resonant wave
umber. The electric field can then be described by two
lowly varying envelopes (SVEs) about carrier waves at
he same frequency and plus or minus the corresponding
esonant wave number. Light interacts with phonons due
o the dependence of the refractive index on the density of
he medium, which is universal, even though the interac-
ion may sometimes be omitted from models of the sys-
em. Phonons can interact with the two SVEs if their
ave numbers are twice the wave number of light (or,
quivalently, the phonon wavelengths are half the wave-
ength of the light’s carrier wave). Additionally, phonons
an interact with light if their wave numbers are close to
ero, with a distance scale similar to the distance scales of
he envelopes of the light intensity. We consider only low-
nd high-frequency longitudinal acoustic modes, even
hough, in general, additional modes are supported. A
aveguide has at least three acoustic modes: one longitu-
inal (also called compression or dilation) mode and two
ransverse (shear) modes. If the fiber is thick, there may
e additional transverse acoustic modes, and thus be an
coustically multi-mode fiber [35,36]. We assume that one
f the acoustic modes is the most important and neglect
he others, because the analysis should begin with the
ost basic acoustic effects and defer to study of multi-
ode and other higher-order effects. For trains of pulses,

coustic waves traveling in a direction normal to the fiber
xis, and reflecting off the fiber circumference, have been
nvoked to account for inter-pulse interactions in commu-
ication fibers [21,34]. This multi-mode effect may be ne-
lected here because it is a higher-order perturbation,
nd it may not be relevant at all for the individual pulses
hat we deal with. Figure 1 is a schematic illustration of a
ber waveguide with a periodically varying refractive in-
ex with light and sound waves propagating within it. A
ragg grating can be produced by doping the waveguide
ith ions and imprinting a periodic variation in the index
f refraction with ultraviolet light [28].

The derivation of the equations for this system is given
n the Appendix A. The electric field and the material den-
ity (phonon field) in terms of nontrivial SVEs,

E�z,t� = u�z,t�exp�i�k0z − �0t�� + v�z,t�exp�− i�k0z + �0t��

+ u�z,t��exp�− i�k0z − �0t�� + v�z,t��exp�i�k0z

+ � t��, �2a�
0
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W�z,t� = w0�z,t� + wu�z,t�exp�2ik0�z − �st�� + wv�z,t�exp�

− 2ik0�z + �st�� + wu�z,t��exp�− 2ik0�z − �st��

+ wv�z,t��exp�2ik0�z + �st��, �2b�

bey the dynamical equations,

0 = ik0�ut + iuz + �v +
2���0/c�2

k0
3��3���u�2 + 2�v�2�u + �es�w0u

+ exp�− 2ik0�st�wuv + exp�2ik0�st�wv
�v�, �3a�

0 = ik0�vt − ivz + �u +
2���0/c�2

k0
3��3��2�u�2 + �v�2�v + �es�w0v

+ exp�2ik0�st�wu
�u + exp�− 2ik0�st�wvu�, �3b�

0 = w0,tt − �s
2w0,zz − �w0,tzz + �es��u�2 + �v�2�zz, �3c�

0 = iwu,t + i�swu,z + i�2k0
2��wu +

k0�es

�s
exp�2ik0�st�uv�,

�3d�

0 = iwv,t − i�swv,z + i�2k0
2��wv +

k0�es

�s
exp�2ik0�st�u�v,

�3e�

here the values of the coefficients in terms of basic
hysical quantities are

n = n��,W� + �n cos�2k0z�, �4a�

k��,W� = n��,W��/c, �4b�

k0 = k��0,W0�, �4c�

k0� = vg
−1 =

�

��
k��,W���=�0,W=W0

, �4d�

� = 3��3��� ;� ,− � ,� �, �4e�

ig. 1. Schematic illustration of a fiber with a periodically vary-
ng refractive index. Light and sound waves propagate in the fi-
er. Photons are shown as wavy lines with arrows indicating the
irection of motion; the low-frequency phonons are shown as a
olid line with double-sided arrows, and high-frequency phonons
re shown as dashed lines with arrows.
s 0 0 0 0
�x = 6��3���0;�0,− �0,�0�, �4f�

� =
�0

c

�n

2
, �4g�

�es =
�0

c

�n

�W
, �4h�

�es =
n��0�

2�
W

�n

�W
. �4i�

he more basic underlying physical properties—the re-
ractive index n���, the magnitude of the periodic varia-
ion of the refractive index �n (for the Bragg grating), the
err nonlinearity ��3��� ;� ,−� ,��, the material density
, the slope of the refractive index with density �n /�W,

he speed of sound in the waveguide �s, and the phonon
iscosity in the waveguide �—must in the end be found
xperimentally.

Some of the physics can be more clearly illustrated by
efining two new variables that are combinations of
orward- and backward-moving waves,

�Brill � �es�exp�− 2ik0�st�wu + exp�2ik0�st�wv
��, �5a�

LBrill � �es�exp�− 2ik0�st�wu − exp�2ik0�st�wv
��. �5b�

sing the variables (5), the dynamical equations (3) are

0 = ik0�ut + iuz + �� + �Brill�v +
2���0/c�2

k0
3��3���u�2 + 2�v�2�u

+ �esw0u, �6a�

0 = ik0�vt − ivz + �� + �Brill��u +
2���0/c�2

k0
3��3��2�u�2 + �v�2�v

+ �esw0v, �6b�

0 = w0,tt − �s
2w0,zz − �w0,tzz + �es��u�2 + �v�2�zz, �6c�

0 = − � �

�t
+ 2k0

2���Brill + �s�− 2ik0 +
�

�z�LBrill, �6d�

0 = − � �

�t
+ 2k0

2��LBrill + �s�− 2ik0 −
�

�z��Brill

+ 2ik0�s��es�es

�s
2 �u�v. �6e�

his form eliminates explicit time-dependencies and is
ore suitable for a direct numerical simulation of the par-

ial differential equations. Moreover, it shows more di-
ectly how the Brillouin phonons can act as Bragg scat-
erers.

Let us examine some typical physical coefficients. The
ost common waveguide material is fused silica. For sim-

licity, we take the values of the medium in bulk since
aveguiding effects are non-universal and the bulk val-
es are suitable as a baseline. Consider light at a wave-
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ength of �0=0.8 or 1.55 	m. The refractive index in the
egion between those wavelengths is close to n=1.45. The
onlinear coefficients can be found in Fig. 2 of [37], which
lots the Kerr nonlinear coefficient of the intensity n2

I , de-
ned by n�I�=n�I=0�+n2

I I, where I= �2��−1n���c�E����2 is
he intensity, n2

I �0.8 	m�=2.8
10−16 cm2/W, and

2
I �1.55 	m�=2.65
10−16 cm2/W. To obtain the self- and
ross-phase modulation coefficients, we first want to ex-
ress this in terms of the third-order susceptibility. Using
aussian units, the nonlinear polarization is

PNL�x,t� =			 ��3�


�t;t1,t2,t3�E�x,t1�E�x,t2�E�x,t3�dt1dt2dt3.

For an electric field at a frequency of approximately �0,
�x , t�=u�x , t�exp�ik0z− i�0t�+c.c., where u�x , t� is a SVE,

he nonlinear polarization is PNL�x , t�
3��3���0 ;�0 ,
�0 ,�0��u�x , t��2u�x , t�, or in the frequency space,
Kerr���=3��3���0 ;�0 ,−�0 ,�0��E��0��2E��0�. The self- and
ross-phase modulation coefficients come from the third-
rder susceptibility [Eqs. (4e) and (4f)], which, for the val-
es above, is ��3���0 ;�0 ,−�0 ,�0�= �12�2�−1n��0�2cn2

I ; at
.8 	m, ��3�=1.5
10−14 cm s2/g, and at 1.55 	m, ��3�

1.4
10−14 cm s2. The self- and cross-phase modulation
oefficients are then �s�0.8 	m�=4.5
10−14 cm s2/g and
x�0.8 	m�=9.0
10−14 cm s2/g, or �s�1.55 	m�=4.2
10−14 cm s2/g and �x�1.55 	m�=8.4
10−14 cm s2/g. Al-

ernatively, the units may be expressed as cm s2/g
�cm/statvolt�2= ��104 m/s� /c�2�m/V�2. It may also be
elpful to express the self-phase modulation coefficient di-
ectly in terms of the measured nonlinear coefficient in
37]: �2���0 /c�2 /k0��s=n2

I n��0��0 / �2��. Reference [32]
easures the optical and mechanical properties of bulk

used silica. Values which we can use as a typical baseline
re the material density W=2.2 g/cm3, the refractive in-
ex versus density �n /�W=0.2 cm3/g, and the speed of
ound �s=5.9 km/s. The phonon viscosity � is a function
f the Brillouin linewidth ���B� and the wavelength ��B�
t which it is measured. Equating the decay time of the
rillouin phonons �B= ����B�−1 [28] with the decay dis-

ance from Eqs. (3), �B= �2kB
2 ��−1, gives �= �8��−1�B

2 �B. For
B
50 MHz measured at �B=0.5893 	m [32], the phonon
iscosity is �=6.9
10−7 m2/s. Lastly, the strength of the
ragg grating imprinted onto the waveguide, �n, cannot
e said to have any typical value, but can take vastly dif-
erent values in different waveguides.

Waveguides can have significantly different optical and
coustic properties than the bulk [35,36,38–45]. This is
artly due to variations in the transverse cross-section of
he light intensity and partly due to the composite nature
f fibers—interfaces between the core and cladding are es-
ecially sensitive to opto-mechanical affects and can also
bsorb acoustic energy. For example, [39,40] measured
he contribution of electrostriction to the Kerr effect for
inear light in an optical fiber at low frequencies
�es�es /�s

2�. This factor is obtained by eliminating the time
erivatives in Eq. (3c) and substituting the acoustic defor-
ation w0�z�= ��es /�s

2���u�2+ �v�2� back into the light propa-
ation [Eqs. (3a) and (3b)]. Reference [39] found electros-
riction to be equal to 19% of the fast (mainly electronic)
ontribution to the Kerr effect �2���0 /c�2 /k0��s [39], or
6% of the total Kerr effect, and [40] found different val-
es for different fibers, using unpolarized light, including
lectrostrictive Kerr contributions a few times larger. By
omparison, for bulk fused silica and linear polarized
ight at the wavelength of �0=0.8 	m, using the (typical)

aterial coefficients above, the electrostrictive contribu-
ion to the Kerr coefficient is �es�es /�s

2
0.46
10−8 s2/g,
nd the fast contribution to the Kerr coefficient is
2���0 /c�2 /k0��s=1.53
10−8 s2/g, giving an electrostric-
ive contribution of 30% of the fast nonlinearity or 23% of
he total Kerr effect. At the wavelength of �0=1.55 	m,
es�es /�s

2
0.24
10−8 s2/g, and the fast contribution to
he Kerr coefficient is �2���0 /c�2 /k0��s=0.75
10−8 s2/g,
iving an electrostrictive contribution of 32% of the fast
onlinearity or 24% of the total Kerr effect. In this in-
tance, the expected contribution of electrostriction to-
ard the Kerr effect at low frequencies in bulk fused

ilica is not so far from—in fact, surprisingly close to—the
alues measured in fibers. This is a confirmation of the
ualitative and quantitative accuracies of the model
erein.

. LAGRANGIAN, HAMILTONIAN, AND
ONSERVED QUANTITIES
he Bragg–Brillouin–Kerr system (3) can be written in

erms of a Lagrangian density in the limit in which pho-
on viscosity vanishes, �=0,

L =
i

2
k0��u�ut − uut

�� +
i

2
k0��v�vt − vvt

�� +
i

2
�u�uz − uuz

��

−
i

2
�v�vz − vvz

�� + �u�v + ��uv� +
2���0/c�2

k0
��s

2
��u�4

+ �v�4� + �x�u�2�v�2� +
�es

2�es
�rt

2 − �s
2rz

2� + �es��u�2 + �v�2�rz

+
�es�s

k0�es

i

2
��wu

�wu,t − wuwu,t
� � + �wv

�wv,t − wvwv,t
� ��

+
�es�s

2

k0�es

i

2
��wu

�wu,z − wuwu,z
� � − �wv

�wv,z − wvwv,z
� ��

+ �es exp�− 2ik0�st��u�vwu + uv�wv� + �es exp�2ik0�st�


�u�vwv
� + uv�wu

��. �7a�

ere we have introduced a potential for the slowly vary-
ng phonon field,

r�z,t� � 	
z0

z

w0�z�,t�dz�, �7b�

here z0 is an arbitrary constant. A Hamiltonian H can be
erived from this Lagrangian. It is a conserved quantity,
nd three additional conserved quantities exist; the con-
erved quantities are the Hamiltonian H, momentum P,
hoton energy N (also called the number of photons), and
aterial mass M,
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M = A	
−



w0dz, �8a�

N =
n��0�2

4�
A	

−



��u�2 + �v�2�dz, �8b�

P = −
n��0�2

4��0
A	

−

  i

2
�u�uz − uuz

� + v�vz − vvz
�� +

�es

�esk0�
rzr

+
�s/k0�

2k0�es�es

i

2
��Brill,z�Brill

� − �Brill,z
� �Brill + LBrill,zLBrill

�

− LBrill,z
� LBrill��dz, �8c�

H =
n��0�2

4��0k0�
A	

−

 −
i

2
�u�uz − uuz

� − v�vz + vvz
�� − ��

+ �Brill�u�v − �� + �Brill��uv� −
2���0/c�2

k0
��s

2
��u�4 + �v�4�

+ �x�u�2�v�2� +
�es

2�es
�rt

2 + �s
2rz

2� − �es��u�2 + �v�2�rz

−
�s

2

2k0�es�es

i

2
��Brill,zLBrill

� − �Brill,z
� LBrill − �BrillLBrill,z

�

+ �Brill
� LBrill,z��dz. �8d�

ere A is the area of the transverse cross-section of the
uided mode. Actually, the most general conserved quan-
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ig. 2. (Color online) Quiescent (zero velocity, �=0) GAS, with
requency in the middle of the bandgap, Q=� /2. The physical pa-
ameters are typical of bulk fused silica, and the Bragg coeffi-
ient is �=90 cm−1. The top part of the figure shows the ampli-
ude of the envelope u of the forward-moving electromagnetic
ave, the middle part shows the envelope v of the backward-
oving wave, and the bottom part shows the acoustic field (ma-

erial density). Solid lines are for the magnitudes of the ampli-
udes, dashed lines for the real parts, and dotted lines are for the
maginary parts.
ity corresponding to the invariance of the system with re-
pect to an additive constant in r�z , t� is not as in Eq. (8a),
ut �−

 rtdz (with a multiplicative and an additive con-
tant). Because the reference density w0 in our model
oes to zero at plus and minus infinities, we can define M
s in Eq. (8a) without fear of divergence on an infinite do-
ain. Note that H in Eq. (8d) is not all the physical en-

rgy in the system, but excludes a constant (N, the energy
n the electromagnetic field) that does not affect the dy-
amics. If phonon viscosity is nonzero, the acoustic fields
ecay. The photon energy (or number of photons) N and
he mass M remain constants of motion in the presence of
honon viscosity, but the momentum P and Hamiltonian

decay.

. GAP-ACOUSTIC SOLITONS
f the Brillouin fields �wu ,wv� and phonon viscosity ��� in
qs. (3) are neglected, there is a family of GAS solutions

20],

u�z,t� = ����1 + �k0��� sin Q sech�� sin Q −
i

2
Q�exp�i����

− i� cos Q�, �9a�

v�z,t� = − �����1 − �k0��� sin Q sech�� sin Q

+
i

2
Q�exp�i���� − i� cos Q�, �9b�

w�z,t� =
�es

�s
2 − �2

�����4���2�sin2 Q

cosh�2� sin Q� + cos Q
, �9c�

here

���� = �k0��2�4���2��2���0/c�2

k0
�s

+
�es�es

�s
2 − �2�tan−1�tanh�� sin Q�tan�Q/2��,

�10a�

� = �2���0/c�2

k0
��x + �s�

2�1 + ��k0��2�� + 2�2
�es�es

�s
2 − �2�−1/2

,

�10b�

� � �����t/k0� − �k0�z�, �10c�

� � �����z − �t�, �10d�

� � �1 − ��k0��2�−1/2, �10e�

nd � must be real-valued. In the quiescent limit ��=0�,
hese are also solutions for nonzero phonon viscosity ��
0�. The solitons (9) and (10) have two essential intrinsic

arameters: Q and �. The soliton parameter Q resembles
similar parameter in the family of the ordinary gap soli-
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ons; it takes values 0�Q�� and determines the soliton
idth [full width at half-maximum equals cosh−1�2
cos Q� / �����sin Q�], the peak intensity, and the fre-
uency [in the rest frame, ����� /k0��cos Q]. The frequency
n the frame moving with the soliton is not generally
qual to ���� /k0��cos Q because the group velocity in a me-
ium is not equal to the speed of light in vacuum �k0�c
” 1�. The soliton velocity � may take any value up to the
roup velocity of light in the medium �����1/k0��, except
or a range of slightly supersonic gap solitons ����
” ��s ,�cr��, where

�cr
2 =

1

2�k0��2

�x + �s

�x − �s
+

�s
2

2

−�� �x + �s

��x − �s�2�k0��2
−

�s
2

2 �
2

−
k0

2���0/c�2

2�es�es/�k0��2

�x − �s
.

�11�

t the typical coefficients given above for bulk fused
ilica, the critical velocities at the two frequencies are
cr�0.8 	m�=6.46 km/s=1.10�s and �cr�1.55 	m�
6.50 km/s. Bright supersonic as well as subsonic soli-

ons exist if the critical velocity �cr is less than the speed
f light in the medium, which will hold in all but very ex-
tic circumstances. (The equations suggest the existence
f a dark soliton [46] in the supersonic region �s����cr,
ut we choose to limit this paper to bright solitons.)
The GASs (9) and (10) reduce to standard gap solitons

7] in the limit of zero electrostriction ��es=�es=0�. There
re resemblances to solitons in the Zakharov system
47–52], in that both contain dispersive equations coupled
o a non-dispersive equation, interaction with the non-
ispersive field changes the amplitude of the soliton, and
he non-dispersive field takes a profile the same shape as
he soliton intensity; furthermore, like GASs, Zakharov
olitons have different dynamics above and below the ve-
ocity of the non-dispersive field, with instabilities for the
aster solitons. Below the speed of sound, the accompany-
ng phonon pulse is a compression, and above the speed of
ound the phonon pulse is a rarefaction. The amplitude of
he acoustic pulse goes to zero when the soliton velocity
pproaches the speed of sound �s from below; the ampli-
ude of the acoustic pulse goes to infinity when the soliton
elocity approaches the critical velocity �cr from above.
hysically, at slightly above the critical velocity, lineariza-
ion of the refractive index against the material density
ill not be a valid approximation, and physical GASs will
ot exist in that range without modification.
Figure 2 shows a quiescent GAS with a soliton param-

ter Q=� /2, material properties typical of fused silica,
nd a wavelength of 0.8 	m. Figure 3 shows a similar
AS, but with velocity ten times the speed of sound. Fig-
re 4 shows a GAS with velocity equal to half the group
elocity of light in the medium.

Note that there are no purely optical solitons without
n acoustic component; purely acoustic pulses are pos-
ible. In the case of zero phonon viscosity �=0, these have
he form u=v=0, while the phonon field w is a combina-
ion of two arbitrary functions, w�z , t�=w+�z−�st� and
−�z+�st�, which represent forward- and backward-
oving acoustic waves.

. GAS ENERGY, MOMENTUM, PHOTONS,
ND MASS
lot of physics can be inferred from the conserved (or

uasi-conserved for finite �) quantities M ,N ,P ,H for a
AS. The soliton’s mass, photon energy (or number of
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hotons), momentum, and energy are obtained by substi-
uting the soliton formulas (9) and (10) into Eqs. (8) to ob-
ain

MGAS =
�es

�s
2 − �2

A4���2Q, �12a�

NGAS =
n��0�2

4�
A4���2Q, �12b�

PGAS =
n��0�2

4��0
A��k0�������4���2��sin Q

+ �4���2��2�2���0/c�2

k0
�s +

�es�es

�s
2 − �2��sin Q

− Q cos Q� + �4���2�
�es�es/�k0��2

��s
2 − �2�2

�sin Q − Q cos Q�� ,

�12c�

HGAS =
n��0�2/k0�

4��0
A�����4���2�sin Q + �−2�sin Q − Q cos Q�

− ���2
2���0/c�2

k0
��s�

2�1 − 4��k0��2 − ��k0��4� + �x�−2�


�sin Q − Q cos Q� + ���2
�es�es

�s
2 − �2�− 2�s

2 + 6�2

�s
2 − �2

+ 4��k0��2�2��sin Q − Q cos Q�� . �12d�

ecall that A is the area of the transverse modes of the
elds in the waveguide; set it to unity for M, N, P, H per
nit area. There is an implicit dependence on the GAS ve-

ocity � via the GAS amplitude factor �. Note that the de-
endence on the parameter Q is quite simple. In Eq. (12c)
or the soliton momentum, the first two terms on the right
and side are the momentum carried by light, and the
hird term is the momentum in the acoustic field.

Figures 5–8 show the conserved quantities over the full
ange of soliton velocities � for a specific soliton param-
ter Q=� /2, for which the solitons are in the middle of
he bandgap. The coefficients are those of bulk fused
ilica, as detailed in Section 2. Each of Figs. 5–8 shows
hat the dependence on velocity would be without elec-

rostriction (dependence of the refractive index n on the
ensity w) and then the conserved quantities for the soli-
ons using the physically correct (nonzero) �n /�W. The de-
endence of the conserved quantities on Q is much sim-
ler than the dependence on �, with different values of Q
enerally making for moderate quantitative but not quali-
ative differences in the plots versus soliton velocity. The
ass M and photon energy (or number of photons) N in-

rease linearly with the soliton parameter Q; the momen-
um P and Hamiltonian H are the sum of two functions of
, each multiplied by either sin Q or �sin Q−Q cos Q�.
igures 5 and 6 plot the mass and number of photons (per
ross-sectional area) in bulk silica. The photon energy per
ross-sectional area N is positive definite, but the mate-
ial mass M is positive for subsonic GASs and negative for
upersonic GASs. Below the speed of sound ���s
5.9 km/s, M, P, and H increase, while N decreases. The
onserved quantities approach finite values as the soliton
elocity approaches the speed of sound from below. Bright
olitons do not exist between the speed of sound and the
ritical velocity �cr=6.46 km/s=1.10�s. The conserved
uantities are infinite at just above the critical velocity
i.e., as the soliton approaches the critical velocity from
bove). Above the critical velocity ����cr�, the soliton
ass M is negative, and it decreases in magnitude (in-
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reases in value) as a function of velocity. Above the criti-
al velocity, the photon energy (also called the number of
hotons) N in the soliton decreases with velocity. The mo-
entum of supersonic GASs first decreases with veloci-

ies above the critical velocity due to the change in mass
f the soliton. Then, near �=9.34
105 m/s=158�s
vg /221, the momentum increases, when the momentum

n the photons is more than the momentum in the
honons. At even higher velocities, �=1.68
109 m/s
0.81vg, the momentum decreases again because the
ositive self-phase modulation decreases the intensity of
he GAS. The Hamiltonian of supersonic GASs first de-

ig. 7. (Color online) Momentum per cross-sectional area �P� of
ASs in bulk silica at wavelength of 0.8 	m. The velocities ���

ange from zero up to the group velocity of light, and the frequen-
ies are in the middle of the bandgap, Q=� /2. (a) Momentum, if
here were there no dependence of the refractive index on the
aterial density. (b) Soliton momentum with physical values of

he electrostrictive constants. (c) Momentum in the light (solid
ine) and sound (dashed line) separately.
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ig. 8. (Color online) Hamiltonian per cross-sectional area �H�
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iven in the text. The velocities ��� range from zero up to the
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he bandgap, Q=� /2. (a) Hamiltonian, if there were no depen-
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es es
reases quickly, then flattens out, and at close to the
roup velocity there is a moderate increase and then a
harp drop.

. SUDDEN ACCELERATION AND
ECELERATION
ome predictions about GAS dynamics can be made based
n the quasi-conserved quantities, given in Eqs. (8) and
llustrated in Figs. 5–8. The momentum PGAS is especially
ritical. If a soliton experiences a supersonic instability—
he instability of the GAS when the velocity is larger than
he speed of sound (see [20])—the system following the in-
tability cannot have more Hamiltonian, momentum, or
hoton energy than the original soliton. Because some of
he faster-moving solitons have less momentum than the
lower-moving solitons (and not significantly less Hamil-
onian either), a slow-moving soliton may decay into a
ast-moving soliton. And if a fast-moving soliton experi-
nces an instability, the large momenta contained in slow
ut non-quiescent solitons may keep the soliton from de-
aying by slowing down to anything more than velocity at
irtually zero.

The supersonic instability leading to the abrupt accel-
ration of a GAS can be seen in Figs. 9–12. Both simula-
ions assume that the medium is fused silica, with a cen-
ral wavelength of 0.8 	m, and a Bragg scattering
oefficient of �=90/cm (which is relatively large, making
he GASs shorter and more intense). The first simulation
s for a GAS with Q=� /3 and an initial velocity ten times
he speed of sound, �=10�s. The instability takes hold,
nd the result is a GAS with the same Q and velocity �
1.2
107 m/s=1600�s=0.046vg. A density variation is

eft behind when the new fast-moving GAS runs away.
ou can also observe high-frequency acoustic waves wu,
v developing initially before the GAS accelerates, then
etting left behind, and also visible is a tail (or wake) of
igh-frequency acoustic waves following the fast-moving
oliton. In the second simulation displayed, the initial
onditions are the same, except that the Q-value of the

ig. 9. (Color online) GAS in fused silica with initial velocity ten
imes the speed of sound, �=10�s, and Q=� /3. Following real-
zation of the supersonic instability, a much faster GAS ��
1600�s� is produced, and a slowly decaying density variation re-
ains behind.
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nitial GAS is � /2. After the instability, some light is
mitted left and right to dispersive (non-soliton) radia-
ion, and the remaining light reforms a GAS with Q
0.25� and Q, and velocity �=1.2
107 m/s=2000�s
0.058vg.
The supersonic instability leading to the sudden decel-

ration of a GAS to zero velocity can be seen in Figs. 13
nd 14. As above, the medium is fused silica, the central
avelength is 0.8 	m, and the Bragg coefficient is �
90/cm. The initial soliton has Q=� /3 and velocity �
6.9
105 m/s=vg /300=117�s. The instability takes hold
nd stops the soliton. There are 5 orders of magnitude be-
ween the speed of sound and the speed of light, so the
ight oscillates many times within the interaction region
hile the low wave number acoustic wave develops and
xpands outward relatively slowly. The high wave num-

ig. 10. (Color online) High-frequency acoustic (Brillouin)
aves interacting with light in the run depicted in Fig. 9. The
rillouin waves are initially zero and grow due to excitation by

he light. When the GAS suddenly speeds up, some Brillouin
aves are left behind, and the now faster-moving soliton pro-
uces its own wake.

ig. 11. (Color online) GAS in fused silica with initial velocity
en times the speed of sound, �=10�s, and Q=� /2. After the su-
ersonic instability, about half of the light escapes as a dispersive
non-soliton) radiation, and the remaining light reforms a much
aster GAS (velocity �=2000�s) with Q=0.25�. A slowly decaying
ow-frequency density variation is left behind.
er (Brillouin) phonons �wu ,wv� also develop, but play a
ery minor role in this instance.

. CONCLUSIONS
e derived a set of propagation equations to describe

ight in a nonlinear fiber with a Bragg grating, coupled by
lectrostriction to low-frequency (sound) and high-
requency (ultrasonic) acoustic waves. Forward- and
ackward-moving light in the vicinity of the bandgap can
nteract with acoustic waves of low wave numbers—in
hich case the interaction is generally referred to as
lectrostriction—or high wave numbers, twice the wave
umber of light—in which case the interaction is called
rillouin scattering.
There is a localized structure in this system, a gap-

coustic soliton (GAS), for the case when Brillouin scat-
ering may be neglected and when phonon viscosity is
ero. GASs exist in the same bandgap as standard gap

ig. 12. (Color online) The high-frequency acoustic (Brillouin)
aves interacting with the light in the run depicted in Fig. 11. As

n the prior simulation, the Brillouin waves are initially zero and
row due to excitation by the light. When the GAS suddenly
peeds up, some Brillouin waves are left behind, and the now
aster-moving soliton produces its own wake.

ig. 13. (Color online) GAS in fused silica with initial velocity of
=6.9
105 m/s=vg /300 and Q=� /3. Following realization of

he supersonic instability, the GAS comes to a stop while emit-
ing acoustic waves to the left and to the right.
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olitons (without electrostriction). GASs exist at velocities
rom zero up to the group velocity of light in the medium,
xcept for a velocity gap from the speed of sound, just be-
ow which the phonon component of the GAS approaches
ero, up to a critical velocity (which is about 10% higher
han the speed of sound for the case of fused silica), just
bove which the acoustic component of the GAS is asymp-
otically large.

Electrostriction introduces a “supersonic” instability
or GASs moving faster than the speed of sound [20]. In
ost cases, the result of the supersonic instability was

he re-formation of a new GAS at a different velocity. By
nalyzing the GASs’ conserved quantities—especially the
omentum, which due to the acoustic parts of the soliton

s much higher at many low velocities than at many high
elocities. We predicted that the post-instability GASs
ay in some cases have velocities much higher than that

f the original soliton. In other cases, the resulting soliton
ay have velocity almost equal to zero. These predictions

f the abrupt acceleration and drastic deceleration are
onfirmed by a direct numerical simulation of the system.

For a waveguide of fused silica (i.e., glass), the momen-
um and acoustic effects dominate the solitons’ behavior
hen the velocity is less than approximately 0.5% of the
roup velocity of light. The usual gap soliton model, in
hich the dependence of the refractive index on the ma-

erial density is neglected, may be accurate when the soli-
ons are moving at more than 1% of the speed of light, but
t slower velocities the GAS model is essential.

PPENDIX A: PROPAGATION EQUATIONS
OR LIGHT AND SOUND
ight propagation is governed by the Maxwell’s equa-
ions, and sound propagation in glass can be described by
he wave equation with a viscosity term. Light and sound
nteract via electrostriction. For optical gap solitons, light
s centered at one frequency, but the direction can be ei-
her forward or backward; the electromagnetic field’s dy-
amics can then be described by two separate equations:
ne for the forward-moving light and one for the
ackward-moving light. The acoustic fields that interact
ith this light can be of high or low wave number. The

ig. 14. (Color online) High-frequency acoustic (Brillouin)
aves interacting with light in the run depicted in Fig. 13.
igh wave number acoustic fields can be either forward-
r backward-moving. The low wave number acoustic field
s centered at wave number zero. The acoustic field for
his system can then be broken down into three equa-
ions: two for the high wave number phonons and one for
he low wave number phonons.

. Electromagnetic Field Equations with Phonon
erturbations
tarting from the Maxwell’s equations, we can consider
n isotropic medium without free charges, currents, or
agnetic polarization. Bragg and Brillouin scattering

rom acoustic waves will be included as extensions of this.
he electromagnetic field and the linear and nonlinear
olarization of the medium obey

� · �E + 4�Plinear + 4�PNL� = 0, �A1a�

� · B = 0, �A1b�

� 
 E = −
1

c

�

�t
B, �A1c�

� 
 B = −
1

c

�

�t
�E + 4�Plinear + 4�PNL�. �A1d�

he dependence of polarization P=Plinear+PNL on the
lectromagnetic field E ,B is taken to have a part which is
inear in the electromagnetic field, with an additional de-
endence on the density of the material,

E + 4�Plinear � D = n2��,w�E, �A2a�

here the expression on the right hand side, relating the
lectric displacement to electric field via a frequency-
ependent index of refraction, holds in the frequency
pace as well as in real space for monochromatic fields.
e have indicated a dependence of the refractive index n

n the density of the material w. Part of the polarization
rises from a third-order Kerr nonlinearity,

PNL = ��3��E · E�E. �A2b�

ourier transforming the time dimension to the frequency
pace, and assuming isotropy, Coulomb’s [Eq. (A1a)] and
mpere’s [Eq. (A1d)] laws are

0 = n2��� � · E�x,�� + 4� � · PNL�x,��, �A3a�

0 = � 
 B�x,�� + i
�

c
�n2���E�x,�� + 4�PNL�x,���.

�A3b�

aking the curl of both sides of Faraday’s law [Eq. (A1c)],
nd inserting the above expressions, gives—after some al-
ebraic manipulation—the wave equation,
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0 = ��2 +
n2����2

c2 �E�x,�� +
4��2

c2 PNL�x,��

+
4�

n2���
� �� · PNL�x,���. �A4a�

Fourier transform in the spatial dimensions gives the
ave equation in momentum space,

0 = �k2 −
n2����2

c2 �E�k,�� −
4��2

c2 PNL�k,��

−
c2

n2����2k�k · PNL�k,���� . �A4b�

f the nonlinear polarization is transverse, which is the
ase for the Kerr nonlinearity (A2b), and the electric field
s transverse, the last terms on the right-hand sides of
qs. (A4) vanish. The basic optical gap soliton has one

nontrivial) spatial dimension, and for light of one polar-
zation, we reduce the mathematical model to

0 = � �2

�z2 +
n2����2

c2 �E�z,�� +
4��2

c2 PNL�z,��, �A5a�

r, equivalently,

0 = �k2 −
n2����2

c2 �E�k,�� −
4��2

c2 PNL�k,��. �A5b�

onsidering the wave equations (A5) in the vicinity of fre-
uency �0 and wave number k0, completing the square for
he quadratic equation, Taylor expanding in the small
erms, and truncating we find

0 = ��k0 + �k�2 −
n2��0 + �����0 + ���2

c2

−
4���0 + ���2

c2

PNL�k0 + �k,�0 + ���

E�k0 + �k,�0 + ��� �E�k0 + �k,�0

+ ���, �A6a�

0 = ���k0 + �k�

+
n��0 + ����0 + ��

c
�1 +

4�

�n��0 + ���2

PNL

E �E�k0

+ �k,�0 + ��� �A6b�

= � �k0 + �k�E�k0 + �k,�0 + ��� +
n��0 + ����0 + ��

c
E

+
2���0 + ��

n�� + ��c
PNL�k0 + �k,�0 + ��� + ¯ �A6c�
0

= � �kE�k0 + �k,�0 + ��� + �n��0��0

c
� k0�E

+
�

��
�n����

c �
�0

�E +
2��0/c

n��0�
PNL�k0 + �k,�0 + ��� + ¯ .

�A6d�

ow, Fourier transforming back to real space, and includ-
ng a non-uniformity in the index of refraction, partly
xed [i.e., arising from �n�z�] and partly as a function of
he material density [i.e., arising from �� /�W�n�z , t�], we
btain

0 = ik0�
�

�t
E�z,t� ± i

�

�z
E + �n��0,z,W��0

c
� k0�E

+
2���0/c�2

k0
PNL�z,t� + ¯ �A7a�

=ik0�
�

�t
E�z,t� ± i

�

�z
E + ��0

c
�n�z� +

�0

c

�n

�W
W�E

+
2���0/c�2

k0
PNL�z,t� + ¯ , �A7b�

here k0= ±n��0��0 /c is the phase velocity and k0�
�d /d���n���� /c��=�0

is the reciprocal of the group veloc-
ty �vg�. Where arguments of the index of refraction are
ot given explicitly, they are based on an average value at
baseline material density W. The result will be an equa-

ion for a SVE about a carrier wave with wave vector
k0 ,�0�.

Equations (A7) apply to any quasi-monochromatic elec-
romagnetic field with any nonlinearity. For the optical
ap soliton, there is one frequency of light in the system,
nd light may be traveling forward or backward. The elec-
ric field E may then be written as two SVEs about carrier
aves with frequencies �=�0 and wave numbers k= ±k0
±n��0��0 /c. The acoustic fields that may interact with

hese light fields are those centered at wave numbers k
0 and ±2k0. If the speed of sound, which we refer to as
s, is constant, then the frequencies of the acoustic waves
re simply the speed of sound ��s� times the wave num-
ers. We also allow the index of refraction to have a small
omponent at half the wavelength of light, which will act
s a Bragg scatterer,

E�z,t� = u�z,t�exp�i�k0z − �0t�� + v�z,t�exp�− i�k0z + �0t��

+ u�z,t��exp�− i�k0z − �0t�� + v�z,t��exp�i�k0z

+ �0t��, �A8a�

W�z,t� = wu�z,t�exp�2ik0�z − �st�� + wv�z,t�exp�− 2ik0�z

+ �st�� + wu�z,t��exp�− 2ik0�z − �st��

+ wv�z,t��exp�2ik0�z + �st�� + w0�z,t�, �A8b�

�n�z� = �n cos�2k0z�. �A8c�

utting the fields in terms of SVEs [Eqs. (A8)] into the
eneral dynamical equations for light [Eq. (A7b)], while
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aking the nonlinearity to be Kerr [Eq. (A2b)], and sepa-
ating the different frequency and wave number compo-
ents gives

0 = ik0�ut + iuz + �v +
2���0/c�2

k0
3��3���u�2 + 2�v�2�u + �es�w0u

+ exp�− 2ik0�st�wuv + exp�2ik0�st�wv
�v�, �A9a�

0 = ik0�vt − ivz + ��u +
2���0/c�2

k0
3��3��2�u�2 + �v�2�v + �es�w0v

+ exp�2ik0�st�wu
�u + exp�− 2ik0�st�wvu�, �A9b�

here

� �
�0

c

�n

2
, �es �

�0

c

�n

�W
. �A10�

his assumes that the speed of sound �s is small enough
o that the frequencies 2k0�s are within the frequency
pread of the SVEs u and v. These are the equations for
he dynamics of the SVEs of light.

. Acoustic Wave Equations with Electrostrictive
erturbations
o complete the dynamical system, we need equations for
he dynamics of the density of the material, i.e., acoustic
aves. In silica glass, the speed of sound has a very weak
ependence on the wave number or frequency, and acous-
ic waves are also subject to viscosity [32]. The depen-
ence of the index of refraction on the density of the ma-
erial creates electrostriction, a force (pressure gradient)
ttracting the material to regions of a higher light inten-
ity. The evolution equation for the density is [27,53]

0 =
�2

�t2W�x,t� − �s
2�2W − �

�

�t
�2W +

�es

2
�2�E�x,t�2�,

�A11�

here W�x , t� is the density of the material, E�x , t� is the
mplitude of the electric field, �2=�2 /�x2+�2 /�y2+�2 /�z2

s the Laplacian, �s is the speed of sound, � is a phonon
iscosity coefficient, and �es is an electrostrictive coeffi-
ient. We will focus on single-mode waveguides, in which
ny transverse dynamics are trivial. This reduces the sys-
em to 1+1-dimensions,

0 =
�2

�t2W�z,t� − �s
2

�2

�z2W − �
�3

�t � z2W +
�es

2

�2

�z2 �E�z,t�2�.

�A12�

ince we will be dealing with optical gap solitons, light in
he system is approximately monochromatic and may be
oving forward or backward, as expressed by Eq. (A8a).
lectrostrictive response times are on the order of 10−9 s

27]. This is several ��6� orders of magnitude slower than
he temporally fast-varying terms ��u2 ,v2 ,u�2 ,v�2� for
isible or near infrared light, so these may be dropped
rom the averaged square field in the phonon equation
A12),
0 = Wtt − �s
2Wzz − �Wtzz + �es��u�2 + �v�2 + uv� exp�2ik0z�

+ u�v exp�− 2ik0z��zz, �A13�

here subscripts denote partial derivatives. Since u�z , t�
nd v�z , t� are SVEs, the phonons’ source terms will be
entered at wave numbers k=0, 2k0, and −2k0. Thus light
n the optical gap solitons will interact by electrostriction
nly with phonons around those same wave numbers,
onsistent with Eq. (A8b). The Fourier transform of the
honon equation (A13) to the momentum-frequency space
s

0 = − �2W�k,�� − i�k2�W + k2�s
2W − k2�esF��u�2 + �v�2��k,��

− k2�esF�uv���k − 2k0,�� − k2�esF�u�v��k + 2k0,��.

�A14�

ince u and v are SVEs, F��u�2+ �v�2��k ,�� will only be sig-
ificant in the vicinity of k
0, F�uv���k−2k0 ,�� will only
e significant at k
2k0, and F�u�v��k+2k0 ,�� will only be
ignificant at k
−2k0. Substituting the sum of SVEs [Eq.
A8b)] into the general phonon equation (A14), and sepa-
ating into the different (and, in the k-space, non-
verlapping) regions,

0 = − �2w0�k,�� − i�k2�w0 + k2�s
2w0 − k2�esF��u�2 + �v�2�


�k,��, �A15a�

0 = �� − �0�2wu�k,�� + i��� − �0��k − 2k0�2wu − �k

− 2k0�2�s
2wu + �k − 2k0�2�esF�uv���k − 2k0,� − �0�,

�A15b�

0 = �� − �0�2wv�k,�� + i��� − �0��k + 2k0�2wv − �k

+ 2k0�2�s
2wv + �k + 2k0�2�esF�u�v��k + 2k0,� − �0�.

�A15c�

ere wu�k ,��=W�k−2k0 ,�−�0�, wv�k ,��=W�k+2k0 ,�
�0�, and w0�k ,��=W�k ,�� are SVEs (in contrast to W,
hich is not a SVE).

. Slowly Varying Phonon Field
aking the phonon equation (A15a), which is for the re-
ion near the �k ,�� origin, or the slowly varying part of
he phonon field, and inverse Fourier transforming it to
eal space, we obtain

0 = w0,tt − �s
2w0,zz − �w0,tzz + �es��u�2 + �v�2�zz. �A16�

his is the most useful form of the governing equations
or low wave number (long-wavelength) acoustic waves.

. Brillouin Scattering—High-Frequency Phonons
ow consider Eq. (A15b), the dynamics of the part of the
honon field with wave numbers close to k=2k0. Complete
he square, expand the root into a Taylor series, assuming
hat the nonlinear term is smaller than the linear terms,
nd drop higher-order terms to obtain
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0 = �� + 2i�k0 + k/2�2� + �u ± 2�k0 + k/2��s�1 − �1/2���k0

+ k/2��/�s�2��wu�k,�� � �k0 + k/2��es�s
−1F�uv���k,�

+ �0� + ¯ . �A17�

hoosing �0=2k0�s�1− �1/2��k0� /�s�2�, and dropping the
ave-number-dependence of the damping, higher-order
ispersion, and a self-steepening-like term, we obtain

0 = �� + 2ik0
2� ± k�s�1 − �3/2�


�k0�/�s�2��wu�k,�� � k0�es�s
−1F�uv���k,� � 2k0�s�1

− �1/2��k0�/�s�2�� + ¯ . �A18�

nverse Fourier transforming this to real space,

0 = iwu,t + i�2k0
2��wu � i�s�1 − �3/2�


�k0�/�s�2�wu,z �
k0�es

�s
exp��2ik0�s�1 − �1/2�


�k0�/�s�2�t��uv�� + ¯ . �A19�

he positive sign corresponds to the equality for the field
u. The phonon viscosity is generally a small perturba-

ion, so drop terms that are quadratic or higher in it,

0 = iwu,t + i�swu,z + i�2k0
2��wu +

k0�es

�s
exp�2ik0�st�uv�.

�A20a�

he corresponding equation for the Brillouin field moving
n the opposite direction �k=−2k0� is

0 = iwv,t − �swv,z + i�2k0
2��wv +

k0�es

�s
exp�2ik0�st�uv�.

�A20b�

. The Bragg–Brillouin–Kerr System
ollecting the definitions of the SVEs of the electromag-
etic and phonon fields,

E�z,t� = u�z,t�exp�i�k0z − �0t�� + v�z,t�exp�− i�k0z + �0t��

+ u�z,t��exp�− i�k0z − �0t�� + v�z,t��exp�i�k0z

+ �0t��, �A21a�

W�z,t� = w0�z,t� + wu�z,t�exp�2ik0�z − �st�� + wv�z,t�exp�

− 2ik0�z + �st�� + wu�z,t��exp�− 2ik0�z − �st��

+ wv�z,t��exp�2ik0�z + �st��, �A21b�

e get the dynamical equations,

0 = ik0�ut + iuz + �v +
2���0/c�2

k0
3��3���u�2 + 2�v�2�u + �es�w0u

+ exp�− 2ik0�st�wuv + exp�2ik0�st�wv
�v�, �A22a�

0 = ik0�vt − ivz + �u +
2���0/c�2

k0
3��3��2�u�2 + �v�2�v + �es�w0v

+ exp�2ik0�st�wu
�u + exp�− 2ik0�st�wvu�, �A22b�
0 = w0,tt − �s
2w0,zz − �w0,tzz + �es��u�2 + �v�2�zz,

�A22c�

0 = iwu,t + i�swu,z + i�2k0
2��wu +

k0�es

�s
exp�2ik0�st�uv�,

�A22d�

0 = iwv,t − i�swv,z + i�2k0
2��wv +

k0�es

�s
exp�2ik0�st�u�v.

�A22e�
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