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Flat-phase loading of a Bose-Einstein condensate into an optical lattice
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It has been proposed that the adiabatic loading of a Bose-Einstein condensate~BEC! into an optical lattice
via the Mott-insulator transition can be used to initialize a quantum computer@D. Jakschet al., Phys. Rev. Lett.
81, 3108~1998!#. The loading of a BEC into the lattice without causing band excitation is readily achievable;
however, unless one switches on an optical lattice very slowly, the optical lattice causes a phase to accumulate
across the condensate. We show analytically and numerically that a cancellation of this effect is possible by
adjusting the harmonic trap force constant of the magnetic trap appropriately, thereby facilitating quick loading
of an optical lattice for quantum computing purposes. A simple analytical theory is developed for a nonsta-
tionary BEC in a harmonic trap.
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I. INTRODUCTION

Experimental advances in manipulating and controll
Bose-Einstein condensates~BECs! of dilute atomic gases ha
resulted in a remarkable series of experiments@1#. One the-
oretical proposal for quantum computing using atoms as
bits is to first load the atoms that are in a BEC into an opti
lattice. Then, by varying the intensity of a laser used to fo
an optical lattice the BEC will undergo a quantum pha
transition from its BEC-like superfluid state to a Mot
insulator state@2#. This has recently led to a seminal expe
ment by Bloch and collaborators@3#.

In principle, starting with a BEC in a trap and turning o
an optical lattice of sufficient well depth in a sufficient
adiabatic manner will prepare the Mott-insulator state.
practice, it is easy to turn on the optical lattice adiabatica
with respect to band excitation~excitation from one band to
another!; however, it is substantially more difficult to turn o
the optical lattice adiabatically with respect to quasimom
tum excitation. The second, more stringent form of adia
ticity requires that the optical lattice be switched on slow
with respect to mean-field interactions and tunneling dyna
ics between optical lattice sites, and hence typically requ
milliseconds@4#. We will refer to the first form of adiabatic
ity as ‘‘interbandadiabaticity’’ and the second form as ‘‘in-
traband adiabaticity.’’ The intraband adiabaticity conditio
has been demonstrated in one-dimensional lattices by O
et al. @5# and ultimately led to the pioneering experimen
demonstration of the Mott-insulator transition@3#. When not
otherwise specified, the termsadiabaticandnonadiabaticin
this paper will refer to intraband adiabaticity.

The goal of the present paper is to present a simple s
egy for remaining in the adiabatic regime while switching
the optical lattice much faster than the millisecond tim
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scales ordinarily required for intraband adiabaticity. T
strategy is to counterbalance the switching on of the opt
lattice with an appropriate change in the force constant of
trap. This strategy is shown to correct and prevent much
the quasimomentum excitation and resulting phase dam
that arises from the nonadiabatic nature of the switching

More specifically, the switching on of an optical lattic
potential can divide a BEC into many individual piec
where phase coherence is maintained across the whole
densate. This phase coherence can be seen by inst
neously dropping the lattice and looking at the moment
distribution through time-of-flight measurements. Howev
because of a spatially dependent change in the density
thus the mean field per well site, one can end up with
quadratic phase dependence developing along the lattic
rection if one does not load the lattice adiabatically w
respect to quasimomentum excitations@4#. Elsewhere@6#, it
has been shown, using optimal control methods, that one
control the phase evolution to obtain a flat phase at so
final time by time varying the harmonic trap force consta
of a confining external~typically magnetic! trap. Here, we
show analytically and numerically that a complete cance
tion of the phase development is possible by appropria
adjusting the external trap.

This paper will focus solely on one-dimensional~1D! lat-
tices, considering only the dynamics of the BEC along
lattice, and will ignore effects transverse to the lattice.
should be noted that the effects of transverse excitation
show up on time scales inversely proportional tov' , the
transverse trapping frequency, which is typically long co
pared to the times in the present paper. Work is now
progress toward further extending these results to two
three dimensions. It is expected@7# that the squeezing of the
BEC into the transverse directions can also be treated u
the above method, namely, by an appropriate adjustmen
the trap in those directions.
©2002 The American Physical Society20-1
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There have been a number of recent publications of b
experimental@8–10# and theoretical@7,11# studies involving
the loading of BECs in one-dimensional lattices, and the
sulting dynamics. This paper is related to these publicati
but focuses explicitly on a means of quickly loading an o
tical lattice from a BEC for quantum computing purposes,
well as for improving experimental signal to noise in sh
time experimental studies of BECs. Note that we consi
the regime where the density of the condensate is sufficie
large, so that the mean-field effects are not entirely ne
gible. Experiments can be carried out in the truly dilute g
regime where mean-field effects are negligible@10#. How-
ever, reducing the condensate density to such low va
would have to be carried out adiabatically, adversely affe
ing the time to load the optical lattice from the initial~dense!
BEC.

The outline of the paper is as follows: In Sec. II, w
define the problem. In Sec. III A, a simple analytical theo
is developed for a nonstationary 1D BEC in a harmonic tr
It is shown that a change in the density of the condens
induces a time-varying phase across the condensate tha
be eliminated by a change in the harmonic force constan
the trap. In Sec. III B it is shown that the effect of switchin
on the optical lattice is to generate an effective renormal
tion of the BEC and an analytical expression is obtained
the modified harmonic trap force constant that compens
for the effective renormalization. The analytical theory is
excellent agreement with numerical simulations. A modifi
version of the theory in the regime where the nonlinear
teraction is strong and hence the width of the conden
differs from well to well is developed in Sec. III C. Sectio
IV contains the conclusion.

II. DESCRIPTION OF PROBLEM

We consider a 1D BEC confined by a harmonic trap a
governed by the Gross-Pitaevskii equation

i\
]

]t
uc&5~K̂1V̂1NU0ucu2!uc&, ~1!

whereK̂52(\2/2m)(]2/]x2) is the kinetic energy operato
V̂ is the external potential energy operator to be discus
shortly, and NU0 is the nonlinear atom-atom interactio
strength, N being the number of atoms andU0
54pa0\2/m is the atom-atom interaction strength that
proportional to thes-wave scattering lengtha0. The BEC is
initially in the ground state of the trap potential and is the
fore stationary. An optical lattice is then switched on, hav
the effect of separating the BEC wave packet into a serie
localized pieces. The potential energy operator there
takes the formV̂(x,t)5(1/2)mv t

2x21S(t)V0cos2(kx), where
v t is the trap frequency~which may be time dependent!, k is
the laser field wave number,V0 is the lattice intensity, and
S(t) is the function that switches on the laser for the opti
lattice and goes fromS50 at the beginning of the ramp-o
of the optical potential toS51 at the end of the switching o
time dts . In applications to quantum computing, one oft
wants to create an optical lattice with one atom per latt
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site, which will serve as quantum bits. However, due to
nonlinearity of the equations, the condensate wave func
develops a phase that varies from lattice site to lattice s
when the optical lattice is not turned on adiabatically@4#.
Such a wave function can be represented by a superpos
of quasimomentum states, and a superposition of quasi
mentum corresponds to a higher energy state and thus ca
give rise to the Mott-insulator state. The problem we addr
is the elimination of this phase profile by adjusting the tr
strength. In the following section, we analyze the evoluti
of BEC wave functions in harmonic traps, and consider
effect of switching on the optical lattice. Finally, a close
form is derived for the precise time dependence of the t
strength that will insure a flat phase for the wave function
all times after the optical potential is fully turned on.

First, however, we transform the NLSE~nonlinear Schro¨-
dinger equation! to dimensionless unitst→t/t0 , x→x/x0,
and c→Ax0c, where for convenience we chooset0

5mx0
2/2\. Performing these transformations, we end

with a dimensionless NLSE

i
]

]t
c~x,t !5S 2

1

4

]2

]x2 1K~ t !x21S~ t !Vcos2~kx!

1Uucu2Dc, ~2!

where the trap force constantK5v t
2t0

2 , the field intensity
V5V0t0 /\, and the nonlinear coefficientU5NU0t0 /x0\,
such that all space, time, and energy quantities are now
pressed in units ofx0 , t0, and\/t0, respectively@15#.

III. ANALYTICAL THEORY

A. Dynamics of a Thomas-Fermi BEC in an harmonic trap

Consider a normalized Thomas-Fermi-type BEC wa
function in a harmonic potential of the form

c~x,t !5HA 3

4w
A12

x2

w2ei (bx21c) ~x/w!2<1

0 ~x/w!2.1,

~3!

where the widthw(t) and phase componentsb(t) andc(t)
are all assumed to be time dependent. We wish to ana
cally describe the evolution of this wave function in a ha
monic trap with trap force constantK @we first consider the
case whereK is constant in time, but the equations of motio
for w(t), b(t), andc(t) remain valid even ifK varies with
time#. Inserting the above wave function into the dimensio
less NLSE, we obtain, by considering separately the real
imaginary parts, two equations involving the three para
etersw(t), b(t), andc(t). The imaginary part yields

2
ẇ

2w S 12
2x2

w2a2D52
b

2 S 12
2x2

w2a2D ⇒ẇ5wb, ~4!

wherea[A12(x2/w2), and from the real part, we get
0-2
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2ḃx22 ċ5
1

4w2a4 1b2x21Kx21U
3

4w S 12
x2

w2D
'

1

4w2 S 11
2x2

w2 D1~b21K !x21U
3

4w S 12
x2

w2D .

~5!

In going to the last line, we expanded 1/a4 in a Taylor series
in x/w, truncating after the second order. Comparing se
rately the coefficients ofx0 andx2, we obtain the following
two equations of motion forb(t) andc(t):

ḃ52
1

2w4 1
3U

4w3 2~b21K !, ~6!

ċ52
1

4w2 2
3U

4w
. ~7!

Taking a time derivative of Eq.~4! and using Eq.~6!, we find

ẅ5ḃw1bẇ

52
1

2w3 1
3U

4w2 2Kw

[2
]

]w
Ve~w!, ~8!

with the effective potentialVe(w) defined as

Ve~w![2
1

4w2 1
3U

4w
1

1

2
Kw2. ~9!

The time evolution of the wave function widthw can there-
fore be easily determined by considering the form of
potentialVe(w). Furthermore, by defining

p[wb, ~10!

we can formulate the equations for the conjugate variablew
and p as a Hamiltonian system of equations withH(w,p)
5p2/21Ve(w), such that

ẇ5
]

]p
H5p, ~11!

ṗ52
]

]w
H52

]

]w
Ve . ~12!

Consider now the potentialVe(w) in Eq. ~9! plotted as
curve (a) in Fig. 1. The potential consists of a well center
around the stable pointw0'(3U/4K)1/3. This can be most
easily obtained by settingb50 and ḃ50 in Eq. ~6! and
solving for w while noticing that the first term on the righ
hand side of Eq.~6! is small compared to the rest and c
therefore be neglected. With initial wave function wid
w(0)5w0, wherew0 is the width of the Thomas-Fermi sta
tionary ground state of the trap, the wave function will r
main stationary throughout. However, if the initial wid
05362
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equals some other value, an oscillatory motion ofw around
the stationary pointw0 will develop. The phase curvatureb
will also oscillate withw obtaining its maximum value when
w(t)5w0 and vanishing whenw approaches its turning
points,w1 andw2.

If an abrupt change in the trap force constant can
made,K→K8, at the exact point in time whenb(t)50, i.e.,
whenw(t) is at one of its turning points, e.g.,w5w1, then it
is possible to change the potential, so as to freeze the
phased wave function and make it stationary. This can
obtained by choosingK85(3U/4w1

3) such thatw1 is the
stationary point of the new potentialVe8 @curve (b) in Fig. 1#.

Another scenario to be considered is the following. W
begin with a stationary flat phased wave function residing
the stationary pointw0 of the potential. Imagine now the
hypothetical possibility of abruptly changing the normaliz
tion of the BEC wave function from unity ton. This would
be equivalent to a change in the potentialVe→Ve8 affected
by changingU→nU. It is obvious that this change will shif
the stationary point to some new valuew085(3nU/4K)1/3

@see curve (c) in Fig. 1# and that the wave function currentl
positioned atw0 will no longer be stationary under the ne
potential. In order to compensate for this change and k
the wave function stationary one can adjust the trap fo
constant and setK85nK such that the ratioU/K remains
constant and the stationary pointw085w0 will not shift @see
curve (d) in Fig. 1#.

We show in the following section that turning on an o
tical lattice corresponds to a change in the normalization
the wave function, so that the above scenario correspo
precisely to our goal of achieving a flat phased BEC load
of an optical lattice. It should be noted that the above ana
sis ignores gravity, which can be assumed to be orthogon

FIG. 1. (a) Ve(w) with stationary pointw0 and examples of
turning pointsw1 and w2 marked. The asymptotic curves corre
spond to the contributions of the two dominant terms inVe and
highlight the way changes in these terms effect the dynamics.b)
Ve8 chosen such thatw085w1 by adjustingK. (c) Ve8 obtained from
(a) as a consequence of change in wave function normalizat
(d) A newVe8 obtained from (c) by also changingK to compensate
for the change affected by the normalization change shown inc).
0-3
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SKLARZ et al. PHYSICAL REVIEW A 66, 053620 ~2002!
the lattice direction. However, even if gravity is along t
lattice direction a similar analysis holds but requires an
ditional linear offset.

B. Switching on the optical lattice

Quickly switching on the optical lattice causes the BE
wave function, which initially has a Thomas-Fermi form
an inverted harmonic potential, to split into a series of loc
ized pieces each residing in a lattice well. As the ove
normalization of the wave function must remain unity, t
displaced population from areas between the lattice w
builds up within the wells such that the density in the
regions increases dramatically~see Fig. 2!. However, if we
neglect the local lattice structure and consider solely the
bal nature of the BEC wave function, we see that it retains
quadratic shape, and the change in the wave function bro
about by the existence of the optical lattice can be viewed
a stretching of the Thomas-Fermi wave function in the v
tical direction~see Fig. 2!. This picture is based on a sep
ration of scales in the spatial dimension, which is a con
quence of the fact that the length of each lattice well,l/2
5p/k, is much smaller than the scale of the total wa
packet,w ~see, for example, Ref.@11#!. It is for this reason
that we can treat first the local structure of the wave funct
in each well and then consider separately the overall glo
evolution of the wave function.

The idea is therefore to view the wave function on a le
coarser than the lattice site dimension, averaging out the
cal lattice structure of the wave function. This procedu
yields a Thomas-Fermi-type wave functionucglobu2
5^ucu2& loc5(3n/4w)@12(x2/w2)# differing from the initial
one by a modified normalization factorn ~see Fig. 2!. The
evolution of this wave function can then be analyzed us
the results of the preceding section.

FIG. 2. Analysis of the BEC wave function in an optical lattic
c init andc f inal are the wave functions before and after applying
optical lattice, andf i(x) is the local wave function within a specifi
well ~Gaussian approximation!. cglob is the global Thomas-Fermi
type wave function after averaging out the local details.
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This procedure can also be viewed as a spatial avera
out of the local structure of the Hamiltonia
operator ^H& loc5^T1Vlattice1Vt1Uucu2& loc5Tav1Vlattice

av

1Vt1U^ucu2& loc . The harmonic trap potentialVt is constant
on the local scale and is therefore unaffected by the ave
ing. If the average kinetic and lattice potential energies
particle,Tav andVlattice

av , are constant from well to well, thes
contributions to the energy can be absorbed into the chem
potentialm, resulting in just the averaged global mean-fie
playing-off, on the global scale, against the trap potentia
in a simple Thomas-Fermi procedure. The trap must then
adjusted to compensate only for the varying mean fi
across the BEC wave function.

In obtaining this simplified picture, we distinguish be
tween two opposite scenarios occurring on the local scale
many cases, when considering the dynamics along the d
tion of the one-dimensional lattice, the mean field with
each well is negligible in comparison with the kinetic an
potential energies along this direction. This occurs for tig
optical wells, e.g., short wavelength and strong intens
such thatAVk2@U/w, wherew is the width of the BEC. The
local wave function can then be well approximated by
Gaussian with a ‘‘well-independent’’ width implying that th
locally averaged kinetic and lattice potential energies are a
well independent. In carrying out the above procedure,
find that the global wave function is a stretched image of
initial one, as described above.

In the opposite regime the mean field within each well c
no longer be neglected. In these cases the calculations
more involved and do not yield the simplified picture pr
sented here of a mere stretching of the wave function.
stead, a distortion occurs which must be treated explic
We therefore delay the discussion of this scenario and p
vide a more general treatment in the following section.

In the following, we wish to determine the normalizatio
factor n in terms of the optical lattice parametersV and k.
Consider the initial Thomas-Fermi wave functionucu2

5(3/4w)@12(x2/w2)#. The number of atoms in the regio
of each lattice well determined by its positionxi is

h~xi !5uc~xi !u2
l

2

5
3p

4wk S 12
xi

2

w2D . ~13!

Assuming that the local population becomes trapped in
well during the switching on of the optical lattice, we ca
then consider the local normalization factor per well as c
stant throughout the evolution. Assuming too that the wa
function at each lattice site is localized after the optical l
tice has been switched on, we can ascribe to each lattice
a local wave functionf i(x), which is normalized toh i . In
order to obtain an average norm per well, we define the lo
probability functionPi(x), which is just the local wave func
tion normalized to unity

Pi~x!5
1

h i
uf i~x!u2. ~14!
0-4
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Averaging out the local structure using the local probabi
function Pi(x), we obtain the coarse-grained wave functi

ucglob~xi !u25^uf i u2& loc5E Pi~x!uf i~x!u2dx

5
1

h i
E uf i~x!u4dx. ~15!

Note, the limits of integration in the above integral should
restricted to a single well but due to the Gaussian-like na
of the wave functionf i(x) the specific limits are unimpor
tant. Note that in evaluating the integral,h i was considered
constant as it is only slowly varying on the local scale.

In many cases, the local wave function can be well
proximated by a Gaussian

f i~x!5A h i

p1/2D
e2[(x2xi )

2/2D2]eiF, ~16!

whereD is the width and the wave function normalizes to t
local normalization factorh i ~see inset in Fig. 2!. D is typi-
cally on the order of but smaller thanl!w and is therefore
small compared with the width of the total wave function,
h(xi) is only slowly varying with respect tox and can be
considered constant within any given lattice site. Averag
out the local structure, we obtain the coarse wave func
cglob(xi) which we now show to be of Thomas-Fermi typ

ucglob~xi !u25^uf i u2& loc5E Pi~x!uf i~x!u2dx

5
h i

ApD

1

ApD
E e22[(x2xi )

2/D2]dx

5
h i

A2pD

5
3

4w
Ap

2

1

kD S 12
xi

2

w2D
[

3n

4w S 12
xi

2

w2D . ~17!

In going from the third to the fourth line we used the expli
form of h i given in Eq.~13!. Comparing the last two lines
we find the modified normalization to be

n5Ap

2

1

kD
. ~18!

It remains to determine the local widthD of the wave func-
tion within each lattice site in terms of the external para
eters. It can be shown analytically~see the Appendix! that
05362
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D5A2
2

k2WS 2
k

4AV
D , ~19!

where W(x) is the LambertW function @12#, so that the
normalization factorn is finally given by

n5
1

2A 2p

WS 2
k

4AV
D . ~20!

The effect of switching on the optical lattice on the dynam
of the wave function can now be viewed as changing
normalization of the initial wave function from unity ton.

If the switching-on timedts is short compared to the glo
bal nonlinear time scaletNL @13#, so as no substantial phas
evolution occurs during this time, the transformation of t
normalization constant can be considered abrupt and the
namics of the wave-function parametersw(t) and b(t) are
raised from the initial potential curveVe to Ve8 @curves (a)
and (c) respectively, in Fig. 1# by the changeU→nU as
described in the preceding section. If no further adjustme
are made, the wave function will begin to evolve on t
potential curveVe8 and develop phase as seen in Fig. 3.
order to cancel this effect one can compensate for the cha
of normalization by adjusting the trap force constant toK
5nK0 @curve (d) of Fig. 1#. In Fig. 4 we plot the
switching-on function of the optical lattice and the change
the trap force constantDK5K2K0 as a function of time.
The evolution of the wave packet under this sequence
events is plotted in Fig. 5, from which it is evident that th
phase remains constant throughout the evolution for the
rect tuning of the trap force constant.

In the simulations presented here, we have takenN51.5
3106 sodium atoms, a scattering length ofa052.8 nm, and
a trap of average frequency 59.26 Hz. Using these values
Thomas-Fermi approximation to the chemical potential,mTF

FIG. 3. Evolution of the wave function~amplitude and phase! as
a consequence of switching on the optical lattice. Note the de
opment of a quadratic phase profile.
0-5
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SKLARZ et al. PHYSICAL REVIEW A 66, 053620 ~2002!
can be calculated and the nonlinear interaction time beco
tNL[\/mTF596.2ms. In order to preserve the time scales
the 1D model as they are in 3D reality, we follow Ref.@13#
and replace the nonlinear coefficientNU0 by CmTFxTF ,
where the Thomas-Fermi radiusxTF5A2mTF /mv t

2 gives the
size of the condensate and the factorC carries the depen
dence of the simulation on the dimensions and is for our
caseC5@Ap/G(211/2)#5 4

3 @13#.
We take the optical lattice wavelength to bel5589 nm

and choosex05l/p52/k, such thatt05\/Er , where Er
[\2k2/2m is recoil energy. The optical lattice is switched o
in a timedts'20 ms to the final intensity ofV0510.94Er .
In units of x05l/p, t0 and\/t05Er , for space, time, and
energy quantities, respectively, we therefore get the follo
ing unitless values;k52 for the optical wave number

FIG. 4. Sequence of external fields keeping phase of wave fu
tion flat and stationary.

FIG. 5. Evolution of the wave function~amplitude and phase! as
a consequence of switching on the optical lattice and adjusting
compensating trap force constant. The stationary flat phase is s
ingly apparent.
05362
es
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K5@(\v t /Er)#255.61531026 for the initial trap force
constant, V510.94 for the final field intensity, and
U5(4/3)(t0 /tNL)(xTF /x0)59.55 for the nonlinear interac
tion strength.

Inserting these values into Eq.~20! yields the normaliza-
tion factor n52.0866, such that the trap force consta
which we analytically predict to yield an optimally fla
phase, isK51.17231025 (85.5 Hz!. This value is off by
merely 2% from the empirically found optimal value ofK
51.15131025 (84.8 Hz!, which generates the evolutio
plotted in Fig. 5. Some small residual spatially varying pha
structure remains. This structure is due to incomplete in
band adiabaticity and can be reduced by increasing
switching-on timedts .

C. Nonlinear regime

We now return to the more complicated scenario wh
the local wave function has spatially varying contributio
from the mean-field term. Various complications arise in t
regime, which must be solved individually. The main com
plication is due to the fact that when the mean field is loca
important it affects the width and shape of the local wa
functions, such that they differ from well to well as shown
the Appendix. This implies that the average kinetic and l
tice potential energies also vary from well to well, affectin
the phase accumulation.

Assuming that the local wave function can still be a
proximated by a Gaussian along the lattice direction~as is
the case unless the local mean field is larger than the kin
energy!, we can use the results of the Appendix to obtain
well-dependentwidth D(xi). This can be inserted back int
Eq. ~A2! to obtain the total local energy as a sum of
contributions: the kinetic energyT, the lattice potential en-
ergyElattice, the trap potential energyEt , and the mean-field
energyEm f . The chemical potential associated with a sp
cific lattice site is@14#

m5
1

h i
~T1Elattice1Et12Em f!

5
1

8D i
2 1

V

2
~12e2k2D i

2
!1Vt~xi !1

h iU

A2pD i

. ~21!

In order to keep the phase evolution constant from well
well, one must adjustVt(xi), such that it cancels all otherxi
dependencies@originating in D(xi) and h(xi)] and thus
makesm independent ofxi .

Another complication arises from the fact that the optic
lattice must be switched on adiabatically with respect to
terband excitations~as stressed in the Introduction!, e.g., the
switching-on timedts in our dimensionless units must b
longer than (2p/kAV). This means that for experiments i
which the lattice wavelength is large, the lower bound on
switching-on time becomes comparable totNL and consider-
able phase evolution will occur during this time.
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To avoid the phase winding during the switching-on tim
one must make the trap frequency change gradually so a
compensate for the changing shape of the wave functio
intermediate times. As a zeroth order approximation, we
sume that a transition of the magnetic trap from its initial
its final form, using the same switching-on function as t
optical lattice, will momentarily compensate for the chan
ing shape of the wave function. The relevant parts of
potential terms in the Hamiltonian will take the followin
form: @12S(t)#Vt

init1S(t)Vt
final1S(t)Vcos2(kx).

In Fig. 6, we show a case where the mean field is imp
tant. In this simulation, we choose parameters as above
cept the optical lattice wavelength and strength w
changed to bel583589 nm@16# andV0545.4Er , respec-
tively, so that the mean field within each well is no long
negligible. With these parameters and following the abo
procedure, we found the optimal trap shape to be of the fo
Vt

final5K„12@12(x/w)2#0.8
… with K511.88, where w

5xTF /x0513.5 is the width of the BEC in the units ofx0
introduced above. We turned on the new trap shape gra
ally, as described above, with a switching-on time ofdts
'1 ms, the resulting constant flat phase can be clearly s
in Fig. 6. Some small residual spatially varying phase str
ture due to incomplete interband adiabaticity remains h
too, and increasing the switching-on timedts will reduce the
residual phase structure.

IV. CONCLUSIONS

The switching on of an optical lattice potential can divi
a BEC into many individual pieces, where phase cohere
is maintained across the whole condensate. However,
cause of a spatially dependent change in the density and
the mean field per well site, one can end up with a quadr
phase dependence developing along the lattice directio
one does not load the lattice adiabatically. We have sho
analytically and numerically that a cancellation of this effe

FIG. 6. Evolution of the wave function~amplitude and phase! as
a consequence of adiabatically switching on the optical lattice
adjusting the compensating trap~strength and shape!.
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is possible by appropriately adjusting the external trap
simple analytical theory has been developed for a nonstat
ary 1D BEC in a harmonic trap. It was shown that the effe
of switching on the optical lattice is to generate an effect
renormalization of the BEC, and hence a nonstationary c
densate. Finally, an analytical expression was obtained
the modified harmonic trap force constant that compens
for the new effective normalization. The analytical theory
in excellent agreement with numerical simulations.

In real experiments, more care is needed to account
the effects of evolution in the transverse directions. Work
now in progress toward extending these results to two
three dimensions. It is expected that the expansion of
BEC into the transverse directions can also be treated u
the above method, namely, by an appropriate adjustmen
the trap in those directions. We have detailed elsewhere
our quasi-1D calculations of the type we presented h
model 3D aspects of the dynamics in cylindrically symmet
potentials@7#, but this method can not describe radial ex
tations of the BEC that might arise due to the optical pot
tial via the mean-field interaction. To the extent that rad
excitations are not important, our method should be an
equate approximation to the 3D dynamics.

It is not known how a small residual spatially varyin
phase will affect the Mott-insulator transition. The residu
phase can be thought of as a phonon like excitation
should be mapped onto the final Mott-insulator state. Ch
acterizing the nature of excitations in an inhomogene
Mott insulator has not been done; however, the small
sidual excitations seen here are not expected to have a s
effect since the total energy of the system is only sligh
above that of the ideal case. A more exact answer to
question cannot be provided within the context of a me
field approach and requires analysis using many-body
proaches to the Mott-insulator transition. Moreover, no th
oretical model exists that is completely appropriate in b
the superfluid and Mott-insulator regimes.
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APPENDIX: CALCULATION OF LOCAL WAVE
FUNCTION WIDTH D

As in the text, we approximate the local wave function
a Gaussian

f i~x!5Ah~xi !

p1/2D
e2[(x2xi )

2/2D2] , ~A1!

d
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of width D, normalized to the local normalization factorh i
and centered aroundxi . We intend here, using the variation
method, to determine the width of the Gaussian in terms
the optical lattice strengthV and wave numberk.

We first compute the energy associated withf i as a func-
tion of D:

E~D!5E f i* ~x!S 2
1

4

]2

]x2 1Vt~xi !1Vsin2@k~x2xi !#

1
1

2
Uuf i~x!u2Df i~x!dx

5S h~xi !

ApD
D E e2[(x2xi )

2/2D2] S 2
1

4

]2

]x2 1Vt~xi !

1Vsin2@k~x2xi !#1
1

2
Uuf i u2De2[(x2xi )

2/2D2]dx

5h~xi !S 1

8D2 1Vt~xi !1
V

2
~12e2k2D2

!

1
h~xi !U

2A2pD
D . ~A2!

Note that the trap potential, denotedVt , and the number of
atoms in the region of the lattice well at positionxi , h(xi),
were extracted from the averaging integral since they
assumed constant on the local scale. According to the va
tional principle, we determine the width of the ground-sta
wave function, f i , as that which minimizes the energ
E(D):

]E~D!

]D
5h iS 2

1

4D3 1VDk2e2k2D2
2

h iU

2A2pD
D 50.

~A3!
t

05362
f

re
ia-
e

An explicit solution of this equation forD is not possible in
general; we therefore distinguish between several cases
make some simplifying assumptions. If, as is the case
short optical wavelengths, the mean-field term becomes n
ligible with respect to the other energy terms, it can be
glected to obtain the following equation:

D4e2k2D2
5

1

4Vk2 . ~A4!

The solution to this secular equation can be written in ter
of the LambertW function, y5W(x), which is defined as
the inverse ofx5yey @12#,

D5A2
2

k2WS 2
k

4AV
D . ~A5!

It can be seen in the inset of Fig. 2 that this value for t
width of the local wave function gives good results. An im
portant point to note is that in this regimeD is independent
of the well position, implying that the lattice potential an
kinetic energies per particle too are well independent. T
crucial point justifies our treatment of the global wave fun
tion cglob as a Thomas-Fermi approximation.

For high-density BECs and longer optical waveleng
the mean field cannot be neglected and Eq.~A3! must be
numerically solved forD. It must be noted, however, that th
resulting form forD(xi) will, in general, be well dependent
implying that the kinetic and lattice potential energies p
particle will also be well dependent and thus contribute
the phase curvature accumulation. This must be taken
account while adjusting the trap to counter the phase ac
mulation, within the non-negligible mean-field regime,
has been discussed in Sec. III C.
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