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Statistics of atomic populations in output coupled wave packets
from Bose-Einstein condensates: Four-wave mixing
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The statistics of the atomic population distributions in nonlinear matter-wave processes, such as four-wave
mixing of matter waves~or output coupled wave packets produced by Bragg scattering! from Bose-Einstein
condensates~BECs!, are determined. Fluctuations of the populations of atoms in the four-wave mixing wave
packet can be due to~a! fluctuations of the laser fields that produce the separate momentum wave packets of
the BEC, ~b! quantum fluctuations arising from finite temperature effects, and~c! the quantum-mechanical
nature of the mean-field BEC wave function. We focus on the latter source of fluctuations. The distribution of
the number of atoms in the four-wave mixing wave packet is binomial and reduces to a Gaussian distribution
for strong conversion. We calculate the skewness and kurtosis of the distribution. The differences in the nature
of the fluctuations in nonlinear phenomena for atoms~matter waves! and photons are discussed.

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Db
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I. INTRODUCTION

Recently, the theory of multiwave mixing of matter wav
formed from Bose-Einstein condensates~BECs! was pre-
sented@1#, and the first experimental observation of coher
four-wave mixing ~4WM! in which three sodium matte
waves mix to produce a fourth was reported@2#. The depen-
dence of the generated matter wave on the densities o
three input wave packets showed a clear signature of
nonlinear 4WM process. Here, we generalize the theory
describe the statistics of the atomic population distributio
that are expected to occur in such nonlinear matter w
experiments. Our results are also applicable for determin
the statistics of the atomic distribution in any process
which the separation of the condensate into distinct s
systems occurs, e.g., the use of a sequence of optical
pulses to produce high-momentum component wave pac
by Bragg scattering@3,4#.

Reference@2# measured the expectation values of t
number of atoms in the 4WM wave packet, but did not rep
on the statistics of the atomic distributions in the vario
wave packets produced by the dynamics. Such statistics
interesting to determine theoretically and experimenta
Measurement of the distribution of the atomic populations
the various wave packets will provide additional informati
on the nonlinear 4WM process. There are three poten
sources for the fluctuations of the number of atoms in
wave packets:~a! fluctuations of the laser fields that produ
the separate momentum wave packets of the BEC,~b! quan-
tum fluctuations arising from finite temperature effects, a
~c! the quantum-mechanical nature of the mean-field B
wave function. Clearly, the statistics of the photon light fie
used to produce the high-momentum wave packets tha
turn produce the 4WM wave packet can also introduce fl
tuations in the number of atoms in the 4WM wave packet
the light field is intense and well reproducible from shot
shot, fluctuations arising through the light fields should
1050-2947/99/61~1!/013606~5!/$15.00 61 0136
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negligible. The theory for BECs has been developed bey
mean-field@6,7#, and can be applied to determine the flu
tuations of the number of atoms in the 4WM wave pac
and the statistics of this problem for finite temperature a
higher level of approximation. For temperatures significan
below the critical temperature, these effects should be ne
gible. Therefore, we focus on the latter source of fluctu
tions, and assume that the other sources of fluctuations
small. Here, we consider the statistics only within the cont
of mean-field theory@5#.

II. MEAN-FIELD DESCRIPTION OF FOUR-WAVE
MIXING IN BECs

At the mean-field level of description of a BEC, all th
translational modes of the BEC are described by a sin
mean-field orbital, and the wave function is symmetric und
interchange of the Bose particles. TheN-particle wave func-
tion C of the zero-temperature Bose condensate is given
the symmetric product

C~ t !5)
j 51

N

c~xj ,t !, ~1!

wherej is the particle index, and the mean-field orbitalc is
the same for all particles. For the 4WM experiment und
consideration@2#, the initial wave function is obtained by
turning off the confining harmonic potential, letting the co
densate wave packet ballistically expand for some time
applying a set of optical pulses to create wave packets w
momenta\k1 , \k2, and\k3 @1,2,8#. Immediately after ap-
plication of the optical Bragg pulses which produce the hig
momentum components of the BEC by a far-detuned stim
lated Raman-type transition, to an excellent approximat
@9#, c is comprised of three BEC wave packets@1,8#,
©1999 The American Physical Society06-1
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c~x,t50!5(
i 51

3

ai~0!f~x,0!exp~ ik i•x!, ~2!

wheref(x,0) is ballistically expanded solution to the Gros
Pitaevskii equation, and the amplitudesai(0), determined by
the intensities of the Bragg pulses, specify the probabi
amplitudes for the three initial wave packets, whe
( i 51

3 uai(0)u251. The normalization is chosen so that t
norm of c is unity ~the norm off is also unity!.

The nonlinear Schro¨dinger equation~the Gross-Pitaevski
equation! determines the dynamical evolution of the tim
dependent wave functionc(x,t) @5#,

i\
]c

]t
5@Tx1V~x,t !1U0ucu2#c, ~3!

where

Tx5
2\2

2m S ]2

]x2
1

]2

]y2
1

]2

]z2D
is the kinetic energy operator,V(x,t)50 since no potential is
imposed on the atoms after the confining potential
dropped,U05(4pa0\2/m)N is the atom-atom interaction
strength, proportional to thes-wave scattering lengthsa0,
and N is the total number of atoms in the condensate.
times t larger than the collision time of the wave packe
tcol , when the wave packets are separated in space, the
function c(x,t) can be written as

c~x,t !5(
i 51

4

f i„x2xi~ t !,t…exp~ ik i•x!, ~4!

wherexi(t) i 51,2,3,4, is the center of thei th wave packet,
xi(t)5(\k i /m)t, and k45k12k21k3. The fourth wave
packet is the 4WM wave packet, absent initially, and crea
exclusively due to the nonlinear interaction in the dynam
of three wave packet collision.

For t.tcol , the expectation value of the population of th
i th wave packet is independent oft and given bypi(t)5pi
5^Ni&/N5*Vxi

dx^c(x)uc(x)&, where the integration region

Vxi
is selected to include the region around thei th wave

packet. Alternatively,pi can be defined in momentum spa
as pi(t.tcol)5pi5^Ni&/N5*Vk i

dk^c(k)uc(k)& where the

integration regionVki
is selected to include the region aroun

the i th wave packet in momentum space. Note thatpi(0)
5uai(0)u2 immediately after the light pulses are applied.

III. PROBABILITY DISTRIBUTION
FOR FOUR-WAVE MIXING

Substituting the wave functionc in Eq. ~4! into Eq. ~1!
and expanding the product, we obtain the multiatom wa
function C(t) in the form of a sum over 4N terms. Each of
these terms represents a definite distribution of atoms
tween various 4WM peaks. Due to the indistinguishability
particles, all terms that differ only by the permutation of t
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particle indices are equivalent. The number of these equ
lent terms is equal to the appropriate multinomial coefficie
N!/(N1!N2!N3!N4!). Further, the sum of equivalent term
is proportional to the symmetrized and normalilzed N bos
Fock state which in the occupation number representatio
denoted asuN1 ,N2 ,N3 ,N4&, hence:

C~ t.tcol!5 (
N1 ,N2 ,N3 ,N4

dN,N11N21N31N4

3S N! p1
N1p2

N2p3
N3p4

N4

N1!N2!N3!N4!
D 1/2

uN1 ,N2 ,N3 ,N4&.

~5!

The probability distributionPN(N1 ,N2 ,N3 ,N4) for find-
ing Ni atoms in the wave packetc i(x2xi ,t), i 51,4, given
that the total number of atoms in the BEC isN, is a modulus
square of the inner product of the wave function in Eq.~5!
with uN1 ,N2 ,N3 ,N4& @10#:

PN~N1 ,N2 ,N3 ,N4!5 z^N1 ,N2 ,N3 ,N4uC~ t.tcol!& z2

5dN,N11N21N31N4

N!

N1!N2!N3!N4!

3p1
N1p2

N2p3
N3p4

N4 . ~6!

Further simplification results if we are interested in det
mining only the number of atoms in the newly created 4W
wave packet, irrespective of the distribution of the atoms
wave packets 1, 2 and 3~as long as the total number o
atoms equalsN). In this case our distribution function, de
fined by Eq.~6!, may be reduced to the binomial distributio

PN~N4!5 (
N1 ,N2 ,N3

dN,N11N21N31N4
PN~N1 ,N2 ,N3 ,N4!

5
N!

~N2N4!!N4!
p4

N4~12p4!N2N4. ~7!

The results of several interesting experiments are emb
ied within the probability distribution~6!. Experimental tests
are likely to entail measurement of moments of the proba
ity distribution. We now give explicit expressions for th
most common moments and convenient expressions for
erating arbitrary moments. The calculation of moments f
lows readily by use of the generating function,

Q[ (
N1 ,N2 ,N3 ,N4

dN,N11N21N31N4

N!

N1!N2!N3!N4!

3p1
N1p2

N2p3
N3p4

N4~p11p21p31p4!N. ~8!

We define new variablesci[ ln(pi), so that

Q5 (
N1 ,N2 ,N3 ,N4

dN,N11N21N31N4

N!e[c1N11c2N21c3N31c4N4]

N1!N2!N3!N4!

5~ec11ec21ec31ec4!N. ~9!
6-2
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Moments are generated by taking derivatives with respec
the ci :

^Ni
pNj

q
•••&[ (

N1 ,N2 ,N3 ,N4

Ni
pNj

q
•••PN~N1 ,N2 ,N3 ,N4!

5S ]p1q1•••

]ci
p]cj

q
•••

QD U
ec11ec21ec31ec451

. ~10!

The condition ec11ec21ec31ec45p11p21p31p451 is
to be invokedafter derivatives are taken. The general expre
sion for moments of the population within wave packeti can
be written as

^Ni
k&5Npi„11@N21#pi~21@N22#pi„•••~k1@n2k# !…!….

~11!

From the general expression~10!, several useful particula
results follow. The average population in each wave pac
is

^Ni&5Neci5Npi , ~12!

and the covariances are

Š~Ni2^Ni&!~Nj2^Nj&!‹5H Npi~12pi !, i 5 j

2Npipj , iÞ j .
~13!

For i 5 j , the particle probability distribution function is th
widest with respect to its mean whenpi50 in the sense tha
Š(Ni2^Ni&)

2
‹/(^Ni&)

2 is maximum forpi'0. The probabil-
ity distribution itself is the sharpest when (^Ni&/N)'0 or 1.
Figure~1! plotsPN(N4) vs N4 for N5200. The distributions
are narrower for largerN. For iÞ j , Eq. ~13! indicates there
is a negative correlation between population fluctuations
different wave packets, as is expected from conservatio
total number of particles.

Higher moments reveal departures of the population
tributions from Gaussian. Here it is more useful to analy
the cumulantŝ ^Ni

p&& @11#,

^^Ni
p&&[

]p

]ci
p

ln Q, ~14!

FIG. 1. Distribution functionsPN(N4) vs number of atomsN4

for different mean number of particles in the 4WM wave packe
01360
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rather than the moments of the probability distribution. T
first few cumulants are given by

^^Ni&&5^Ni&5Npi , ~15!

^^Ni
2&&5^~Ni2^Ni&!2&5Npi~12pi !, ~16!

^^Ni
3&&5^~Ni2^Ni&!3&5Npi~12pi !~122pi !, ~17!

^^Ni
4&&5^~Ni2^Ni&!4&23^~Ni2^Ni&!2&2

5Npi~12pi !~126pi16pi
2!. ~18!

The first and second cumulants are the average and varia
The third and fourth cumulants are closely related to wha
commonly called the skewness and kurtosis of the distri
tion @12#:

F ~skewness!5
^^Ni

3&&

^^Ni
2&&3/2

5
122pi

ANpi~12pi !
, ~19!

F ~kurtosis!5
^^Ni

4&&

^^Ni
2&&2

5
126pi16pi

2

Npi~12pi !
. ~20!

Skewness measures the departure of the distribution f
symmetrical, while kurtosis measures the flatness of the
of the distribution. Both quantify how different the distribu
tion is from Gaussian, and both are zero for a Gaussian
tribution. Figure~2! plotsANF~skewness! andNF~kurtosis!
versuspi ; these quantities are independent ofN. The figure
shows that the wave packet population distribution tends
ward Gaussian with increasingN, especially away from the
limits pi→0 or 1. As shown in Fig. 2, the skewness indicat
that the population tails toward highNi when pi,1/2 and
toward lowNi whenpi.1/2, and the kurtosis indicates tha
the distribution is slightly flatter than Gaussian@F~kurtosis!
,0# when pi'1/2 and more spiked than Gaussia
@F~kurtosis!.0# in the limits of pi→0 or 1.

When the total number of particlesN is a random vari-
able, the results we have obtained for the statistics of
atoms in the various wave packets must be folded with
statistics Pi(N) of N initial bosons. The probabilities

FIG. 2. Skewness and kurtosis of the wave packet popula
distribution PN(N4) as a function of the mean number of particl
in the 4WM wave packet.
6-3
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P(N1 ,N2 ,N3 ,N4) and P(N4) are then obtained a
P(N1 ,N2 ,N3 ,N4)5(NPi(N)PN(N1 ,N2 ,N3 ,N4) and P(N4)
5(NPi(N)PN(N4), respectively.

In the above discussion we described fluctuations
atomic boson systems. It is both interesting and instructiv
mention the difference between atomic and photonic s
tems, especially in view of the close analogy between 4W
with BECs and 4WM in nonlinear optics. The difference
due to superselection rules@13# and conservation of barioni
number in bosonic matter wave systems. In order to und
stand the relationship between the statistics of 4WM of m
ter waves and of photons in a nonlinear dispersive medi
it is instructive to consider what a beam splitter does to m
ter waves~i.e., an atomic beam splitter! and compare it to a
photonic beam splitter. As we shall see, the difference ar
not in the action of the beam splitter, which leads to t
equivalent of the factorPN(N4) given above, but in the ini-
tial probability distributionPi(N).

IV. BEAM-SPLITTER ANALOGY

To illustrate the difference between statistics of photo
and matter 4WM, we consider a simple model of a be
splitter for photons or for bosonic atoms.~The application of
Bragg pulses to output couple part of a BEC may be view
as a realization of a single-input atomic beam splitter.! Con-
sider a beam splitter having two input and two output po
The annihilation ~and creation! operators for~photon or
bosonic atom! particles in the input and output ports a
related as follows:

S a1

a2
D 5S Ap A12p

2A12p Ap
D S b1

b2
D , ~21!

wherep is the probability of particles being directed from th
first input port to the first output port. The input annihilatio
operators are denoted byb1 and b2, and the output annihi-
lation operators bya1 and a2, respectively. Note that we
have taken the probabilityamplitudesto be real; in genera
the matrix elements appearing on the right-hand side of
~21! are complex. An input field can be injected into ea
port. The probability distribution for the number of particle
in the j th output port is in general given by

P~N!5^d~N2aj
†aj !&. ~22!

Let us consider the case of electromagnetic input fie
that are coherent states, and for simplicity, we~a! consider
only one mode of the field being populated, and~b! take the
initial input into the second port of the beam splitter to be
vacuum field. The product coherent input state is theref
given byub,0& whereb is the complex coherence coefficie
for the first input port and 0 is the complex coherence co
ficient for the second input port. The action of the inp
annihilation operators on the input state is given by

b1ub,0&5bub,0&,

b2ub,0&50. ~23!
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To evaluate the average in Eq.~22! for the case of a coheren
electromagnetic input field as defined here, we use the F
rier expansion of the delta function and the well-known e
pression of the exponential function in the normal-order
form,

exp@2 i ja1
†a1#5:exp@~e2 i j21!a1

†a1#:, ~24!

where :O: denotes normal ordering of an operatorO. Since
normal ordering of theai operators yields normal ordering o
the bi operators, when we take the expectation value in
equation after introducing normal ordering according to
above prescription, all the operators can be substituted
their expectation values. By expanding and integrating, te
by term, we obtain

P~N!5
~pb2!N

N!
exp~2pb2!. ~25!

Photons in the coherent state obey Poisson statistics
initial probability Pi(n) for measuringn photons in the first
port, before it passes through the beam splitter is there
equal to

Pi~n!5
b2n

n!
exp~2b2!. ~26!

In a fashion similar to what was mentioned at the end of
previous section, the probability distribution after passi
through the beam splitter is a convolution of the initial s
tistics and statistics of the beam splitter:

P~N!5 (
n5N

`

Pi~n!S n

ND pN~12p!n2N

5exp~2b2!
~b2p!N

N! (
n5N

`
@b2~12p!#n2N

~n2N!!
. ~27!

This yields the result presented in Eq.~25!. Hence, the sta-
tistics of photons passing though a beam splitter rema
Poissonian, but the mean value^N& is lowered.

On the other hand, in the atomic bosonic case discusse
Sec. II, the initial zero temperature state of the BEC is a F
state, with a well-defined number of particles. Hence, a
application of the Bragg pulses to split the condensate,
particle distribution is binomial for bosonic atoms. In term
of our simple model of the beam splitter, we calculate t
average in Eq.~22! using Fock states instead of cohere
state:

P~N!5E
0

2p dj

2p
^N,0uexp@2 i ja1

†a1#uN,0&

5S n

ND pn~12p!N2n. ~28!

Our simple model of the beam splitter points out one
the differences in the statistics with photons and with coh
ent matter waves. The distributionPi(N) is in general dif-
6-4
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ferent for the two cases. Another important difference ari
from the fact that the nonlinearity in the mean-field appro
mation for BECs is not associated with any external mediu
In contrast, for 4WM of electromagnetic fields in a dispe
sive nonlinear medium, the medium itself introduces
source of thermal fluctuations that may significantly affe
the statistics of the measurements of particle number. A t
potential source of difference is the fluctuations of the la
fields that produce the separate momentum wave packe
the BEC. The statistics of the Bragg pulses used to prod
the high-momentum wave packets can introduce fluctuat
in the number of atoms in the 4WM wave packet.

V. SUMMARY AND CONCLUSION

In summary, we have determined the fluctuations of
number of atoms in BEC wave packets produced in
4WM of matter waves within the mean-field approximatio
We showed that the number of atoms in the 4WM wa
packet is given by a binomial distribution that, by th
central-limit theorem, reduces to a Gaussian distribution
the strong 4WM conversion limit. We pointed out that ske
ness and kurtosis can be measured to establish the natu
the distribution of atoms in the various momentum wa
s
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packets. We discussed the possible differences of the st
tics of 4WM for photons in nonlinear dispersive media a
for coherent matter waves. The fluctuations described h
will be difficult to observe in experiment, but their signifi
cance should not be underestimated, since their underst
ing is important for problems associated with entangleme
and because they provide a fundamental quantum limit.
nally, we emphasize that the statistical properties discus
here may be directly applied to any process in which
separation of the condensate into distinct subsystems oc
e.g., the use of a sequence of optical light pulses to prod
high-momentum component wave pacekts by Bragg sca
ing @3,4#.
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