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Abstract
The dynamics of a Bose–Einstein condensate (BEC) in a time-dependent
harmonic trapping potential is determined for arbitrary variations of the position
of the centre of the trap and its frequencies. The dynamics of the BEC
wavepacket is soliton-like. The motion of the centre of the wavepacket, and
the spatially and temporally dependent phase (which affects the coherence
properties of the BEC) multiplying the soliton-like part of the wavepacket,
are analytically determined.

Bose–Einstein condensates (BECs) of dilute atomic gases in magnetic traps provide a simple
many-body system in which to investigate the evolution of a macroscopic coherent quantum
system under the influence of external forces [1]. Analytic mean-field solutions for these
systems exist even for time-dependent external forces [2, 3]. The special scaling properties
of the harmonic potential, created by the interaction of the atomic magnetic moments and
the average magnetic field of the trap which has a quadratic spatial form, makes it easy to
determine the evolution of the condensate, even under temporal variations of the frequency
of the trap [4, 5]. Moreover, Kohn [6] and Dobson [7] have shown that, for any many-body
system in an arbitrarily changing harmonic potential, the motion of the centre of mass of the
system is decoupled from the motion of other degrees of freedom of the system.

Here we present an exact solution for the motion of a BEC under the influence of a harmonic
magnetic field whose centre moves as an arbitrary function of time and whose frequency varies
arbitrarily with time. When the frequency of the harmonic trap is constant in time, the motion of
the condensate is as a rigid body whose shape is not changed as the potential moves, the motion
of the centre of the condensate is analytically determined, and the time dependence of the phase
of the condensate is also analytically obtained. We stress that this result applies not only at the
mean-field level of approximation, as described by the Gross–Pitaevskii equation [3], but quite
generally at the field-theory level. Hence, upon shaking a harmonic potential, no matter how
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vigorously or quickly, a condensate does not develop an above-the-mean-field component and
does not develop a temperature. No amount of shaking will yield a thermal cloud in such a
system. When the frequency of the harmonic potential also varies, the centre-of-mass motion
of the condensate and its phase can still be analytically determined, and the condensate shape
is obtained by solving the Gross–Pitaevskii equation for a harmonic potential whose centre is
not moving.

We consider a general system of N mutually interacting identical bosonic particles of
mass m in an external time-dependent harmonic potential. The Hamiltonian for the system is
given by

H =
∑

α

[
p2

α

2m
+

1

2
m

∑
i=x,y,z

ω2
i (t)(xαi − x0i (t))

2

]
+

∑
α,β �=α

U(xβ − xα). (1)

Here x0i (t) is the ith component of the time-dependent position vector of the centre of the
harmonic trap and xαi is the ith component of the αth boson. Let us make the coordinate
transformation to a new system of coordinates comprising X = ∑

α xα/N and qα = xα − X

for α = 1, . . . , N − 1. Note that qN = xN − X is a dependent variable equal to − ∑N−1
α=1 qα

and
∑N

α=1 qα = 0. We can write the quadratic term of the harmonic potential using these
variables as

1
2m

∑
i=x,y,z

ω2
i (t)

[∑
α

qαi + Xi − x0i (t)

]2

=
∑

i=x,y,z

ω2
i (t)

(
1
2M[Xi − x0i (t)]

2 + 1
2m

∑
α

q2
αi

)
,

(2)

where we have defined M = Nm and we used the relation
∑N

α=1 qαi = 0. If, for simplicity of
notation, we drop the indices i that specify the different components of the harmonic frequency
and position variables, the above Hamiltonian is now

H =
[
P 2/2M +

1

2
Mω2(t)(X − x0(t))

2

]
+

N−1∑
α=1

[
p2

α

2m
+

1

2
mω2(t)q2

α +
∑
β �=α

U(qβ − qα)

]
. (3)

Hence, the general wavefunction ψ(x1, x2, . . . , xN , t) may be written in product form,
ψ(x1, x2, . . . , xN , t) = ψCM(X, t)ψrel(q1, q2, . . . , qN−1), where the relative part of the
wavefunction does not depend explicitly on time, the effect of the motion (time dependence)
of the harmonic potential is only on the centre-of-mass part of the wavefunction, and this
dependence is given via the quantity x0(t). Thus, the motion relative to the centre of mass
is decoupled from the motion of the centre of mass, and only the latter is influenced by the
shaking. This is true at the field-theory level.

At the mean-field-theory level, the harmonic potential appearing in the Gross–Pitaevskii
equation is of the form

V (x, t) = m

2

∑
i=x,y,z

ωi(t)
2[xi − xi0(t)]

2 ≡ V0(x − x0(t), t), (4)

where x0(t) = (x0(t), y0(t), z0(t)) is an arbitrary time-dependent displacement of the centre
of the trap and (ωx(t), ωy(t), ωz(t)) are the (perhaps time-dependent) trap frequencies. Under
the action of a potential of the form (4), the internal dynamics of a system of particles is not
affected by an arbitrary motion of the centre of the potential. This follows from the fact that
a quadratic potential of the form (4) can be expanded at any instant of time around the mean
value R(t) ≡ (Rx(t), Ry(t), Rz(t)) of the centre of mass of the system as

V (x, t) = V0(x − R) + m
∑

i

ω2
i (Ri − xi0)xi +

m

2

∑
i

ω2
i (x

2
i0 − R2

i ). (5)
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The second term in equation (5) corresponds to a homogeneous time-dependent force acting
on the system of particles and it can therefore be responsible only for a global shift of the
wavefunction in position and momentum space. The third term is coordinate-independent and
can therefore be responsible only for a global phase shift of the wavefunction.

We demonstrate this general principle by considering a condensate of alkali atoms in a
time-dependent harmonic magnetic trap as given by equation (4); we produce the general form
for the condensate wavefunction. The following is thereby a generalization of the result of
Heller [8] for time-dependent harmonic potentials to the case of interacting many-body boson
systems. For simplicity we assume that the condensate can be described by a single mean-field
wavefunction ψ(x, t), but this assumption is not necessary because the following treatment
can be automatically applied if ψ(x, t) is regarded as a field operator. In mean field, the
dynamics of a condensate of weakly interacting atoms is determined by the time-dependent
Gross–Pitaevskii equation:

ih̄
∂ψ

∂t
=

[
− h̄2∇2

2m
+ V (x, t) + U0|ψ(x, t)|2

]
ψ(x, t), (6)

where U0 = (4πh̄2/m)Na0 is proportional to the number of atoms in the condensate and a0

is the s-wave scattering length for collisions between the atoms. Under the influence of the
potential of the form (4), the solution of this equation can be written as

ψ(x, t) = ψ0(x − R(t), t) exp{i[P (t) · x/h̄ − φ(t)]}, (7)

where ψ0(x, t) satisfies the time-dependent Gross–Pitaevskii equations with x0(t) = 0, and
the ith component of the vector R(t) satisfies the equation of motion

R̈i + (ωi(t))
2(Ri − xi0(t)) = 0. (8)

In equation (7) the momentum P (t) = mṘ(t) and the phase φ(t) = ∑
i φi(t) is given by

φ(t) = m

2h̄

∑
i

{∫ t

0
ω2

i (t
′)[R2

i (t
′) − x2

i0(t
′)] + [Ṙi(t

′)]2 dt ′
}
. (9)

The proof is straightforward. Assume that ψ0(x, t) satisfies equation (6) with x0 = 0,
then substitute the solution (7) into equation (6) for arbitrarily varying x0(t) to obtain

−mR̈ · x + h̄φ̇ = m

2
Ṙ2 +

1

2
m

∑
i

ω2
i [(xi − xi0)

2 − (xi − Ri)
2]ψ0. (10)

It is easy to verify that this is indeed satisfied for Ri(t) and φ(t) given above.
Note that the phase factor exp{i[P (t) · x/h̄ − φ(t)]} in equation (7) affects the coherence

properties of the condensate wavepacket, which are given in terms of the coherence function
C(ρ, τ ; t) = ∫

d3xψ∗(x + ρ, t + τ)ψ(x, t) [9, 10].
As an example, let us first consider the solution in the case where ωx(t) = ωx = const

and determine Rx(t) and φx(t). In this case ψ0(x) may be taken as the ground-state solution
of the time-independent Gross–Pitaevskii equation, which is obtained by replacing the time
derivative on the left-hand side of equation (6) by µψ0, where µ is the chemical potential of the
condensate. In this case the solution (7) is a solitary solution, namely, the condensate moves
as a rigid body without changing its shape. The general solution for Rx(t) in equation (8) is
then given by

Rx(t) = cos ωxtRx(0) +
sin ωxt

ωx

Ṙx(0) + ωx

∫ t

0
dt ′ sin ωx(t − t ′)x0(t

′). (11)
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In what follows we give some examples for the dynamics in different shaking schemes. For a
periodically shaken trap, such that x0(t) = x0 sin ωt and Rx(0) = 0, Ṙx(0) = 0 we obtain the
following solution:

Rx(t) = ωx

ω2
x − ω2

[ωx sin ωt − ω sin ωxt]x0, (12)

so the instantaneous difference of the centre of the wavepacket from the centre of the potential
is given by

Rx(t) − x0(t) = ω

ω2
x − ω2

[ω sin ωt − ωx sin ωxt]x0. (13)

The expression for the phase φx(t) can easily be obtained analytically in terms of simple
trigonometric functions using equation (9).

We identify three different regimes for this solution:

(i) The adiabatic regime. When ω � ωx , the motion of the condensate will adiabatically
follow the motion of the centre of the trap. We can then approximate

Rx(t) − x0(t) ≈ ω

ωx

[
ω

ωx

sin ωt − sin ωxt

]
x0, (14)

whose maximal value is max{|Rx(t)−x0(t)|} ≈ x0ω/ωx . The adiabatic approximation is
justified if this is much smaller than the spatial width 	x of the condensate wavefunction
ψ0, i.e. ω/ωx � 	x/2x0.

(ii) Resonance. If ω = ωx , then

Rx(t) = x0

2
[sin ωxt − ωxt cos ωxt], (15)

and the amplitude grows linearly with time.
(iii) Averaged effective potential. When ω � ωx ,

Rx(t) ≈ x0
ωx

ω
sin ωxt, (16)

and the motion of the centre of the condensate is only slightly affected by the shaken trap.

Figure 1 plots Rx(t) versus t for four different values of the ratio ω/ωx . In figure 1(a),
ω/ωx = 0.3 and the small deviation of Rx(t) from x0(t) is evident. In figure 1(b), ω/ωx = 0.8
and a substantial overshoot of Rx(t) relative to x0(t) is obtained. The linear growth of Rx(t)

is clearly seen for ω/ωx = 0.99 in figure 1(c), and the small oscillation of Rx(t) is evident for
ω/ωx = 5 in figure 1(d).

For two-dimensional motion corresponding to an ellipsoidal rotation of the centre of the
trap, x0(t) = x0 sin ωt and y0(t) = y0[1−cos ωt], the solution for Rx is given by equation (12)
and Ry is

Ry(t) = 1 − cos ωyt

ωy

+
ωy

ω2
y − ω2

[cos ωyt − cos ωt]. (17)

The phase φ(t) is again simple to calculate.
If the trap is periodically shaken in the x direction for a finite duration t0 and then the

shaking is stopped, the solution for the centre of the wavepacket for 0 < t < t0 is given by
equation (12), and for t > t0,

Rx(t > t0) = ωx

ω2
x − ω2

x0{[ωx sin ωt0 − ω sin ωxt0] cos ωxt + ω[cos ωt0 − cos ωxt0] sin ωxt}.
(18)
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Figure 1. Rx(t) for a periodically shaken trap with constant trap frequency ωx and four different
values of the shaking frequency ω. The broken curve is the position of the centre of the trap x0(t).

Analytic solutions to equation (8) for arbitrary ωi(t) are not known. Even for harmonically
varying ωi(t) and xi0(t), where equation (8) corresponds to a driven Mathieu equation [11],
analytic solutions are not available. In this case, depending on the ratio of the frequencies for
the variation of ωi(t) and xi0(t), regular bounded motion or unbounded motion of Ri(t) may
result. Nevertheless, equation (7) with central wavepacket coordinate R(t) and phases φi(t)

given by equations (8) and (9) gives the analytic form for the wavefunction.
The following numerical example illustrates the nature of the analytic solution for a

shaken vibrating trap. Figure 2 plots Rx(t) versus t for a periodically varying trap frequency
ωx(t) = ωx(0)[1+δ sin(ωvt)], where δ and ωv are the amplitude and frequency of the vibration.
Unbounded motion is expected when either the shaking or the vibration frequencies are resonant
with the basic trap frequency ωx(0) (figure 2(b)), or if the sum of the vibration frequency and
shaking frequency, or the sum of integers times these frequencies, is resonant with ωx(0)

(figures 2(c), (d)). Unbounded solutions for the volume of the condensate are expected even in
the absence of shaking when the vibration frequency is resonant with the trap frequency [4,5].
However, the motion of the centre of the trap causes the centre of mass of the condensate to
move with respect to the centre of the trap, and the amplitude of this motion may be amplified
by a resonant change of the trapping frequency.

We stress that the main result of this paper is valid for any system of interacting particles
in a harmonic potential. Multi-component BECs with harmonic potentials have solutions
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Figure 2. Rx(t) for a periodically shaken trap with periodically vibrating trap frequency
ωx(t) = ωx(0)[1 + 0.25 sin(ωvt)] for different values of the shaking frequency ω and vibration
frequency ωv .

which also have the properties discussed above, provided that the time-dependent harmonic
potentials for the various components are exactly the same. Since the magnetic moments
of atoms in different Zeeman levels, or different isotopic species of the same element, or of
different elements (for mixed species BECs) are, in general, not identical, our solution will, in
general, not be relevant for these cases.

In practice, magnetic traps for BEC alkali atoms are harmonic only near their centre within
a range rh, which is typically a few tens of microns. If such a magnetic trap is shaken, the
condensate may enter a region where the true potential is anharmonic. In this case the shape of
the condensate may change and the motion of its centre of mass may deviate from the solutions
given above. The maximal velocity that can be achieved by accelerating a condensate within
the harmonic range rh is roughly given by vmax = ωtraprh, which is typically of the order of
a few cm s−1. By shaking a magnetic trap using a time-dependent gradient magnetic field
it is possible to boost condensates in a controlled manner to this range of velocities without
changing their shape. This method can also be used in conjunction with other methods of
optically output coupling high momentum wavepackets [12, 13] to create novel wavepackets.

To summarize, quite generally, shaking a harmonic trap will not cause a thermal cloud of
atoms to develop from a condensate state; only the centre-of-mass motion of the condensate
is affected. This is true even at the field-theory level. We determined analytic solutions
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for the dynamics of BECs of dilute atomic gases in shaken and vibrating harmonic traps,
as described by the Gross–Pitaevskii equation (the mean-field level of approximation). One
potential application of relevance for the field of atom optics is to boost BECs to the desired
velocities.
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