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T-shaped quantum wires in magnetic fields: Weakly confined magnetoexcitons beyond
the diamagnetic limit
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Optical excitations of magnetoexcitons in T-shaped wires are calculated and compared with experiment. We
find the single-particle states for electrons and holes confined to a wire in a magnetic field and use these states
as a basis for calculations of magnetoexciton states. We accurately reproduce the field dependence of the
exciton states and explain the small, field-induced, energy shifts that are observed for these states. The shifts
are small because the T-junction provides weak confinement, rather than strong quantum confinement. Dia-
magnetic shifts calculated from perturbation theory fail to describe the experimental results. We determine
when perturbation theory is valid for these nanostructures and which gauge should be used to give the
diamagnetic shift that best reproduces the field dependence at low fields.
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I. INTRODUCTION

The development of semiconductor quantum wires a
dots has progressed rapidly in recent years. Quantum
nanostructures can be fabricated now with monolayer pr
sion, with dimensions of a few nanometers, free from da
age due to lithographic processing, and in high density by
use of all-growth fabrication processes based on epita
techniques. One of the most successful all-growth techniq
for fabricating wires has been cleaved edge overgrowth.1–25

In this approach, T-shaped wires are created at the inter
tions between orthogonal quantum wells with the wire a
perpendicular to the cross section shown in Fig. 1. For Ga
AlGaAs wires, these intersections are made by growin
@110# GaAs quantum well~the arm well! on the cleaved
edge of a multiple@100# GaAs/AlGaAs quantum well sys
tem ~the stem wells!. Electrons and holes are trapped at t
T-shaped intersections because the single-particle con
ment energy is lower in the intersections of the stem and
wells than in either the stem or arm wells.1

In this paper we present the first calculation of confin
magnetoexciton states and energies in T-shaped wires.
use an extension of the theory developed to calculate exc
states at vanishing magnetic field26 to BÞ0. Exciton states
for interacting electron-hole pairs confined to a T-shaped
tersection in a finite magnetic field are calculated by de
mining exactly the single-particle states confined to the
intersection in a magnetic field and then using these sin
particle states as a basis for a configuration-interaction
culation to include the pair interaction. We then compare
results for magnetoexciton energies with experiments9 and
with the previous interpretation of these experiments.9

A wire nanostructure is considered to be in the on
dimensional~1D! quantum limit when the electron-hole in
teraction can modify the electron-hole pair relative moti
along the wire axis (z axis in Fig. 1! but is not strong enough
to mix the single-particle lateral sublevels. In a 1D quant
wire, the interacting electron and hole occupy individu
single-particle lateral sublevels. In simple models for ex
0163-1829/2001/63~11!/115304~10!/$15.00 63 1153
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tons in ideal wires, lateral confinement is usually defined
a high-barrier~hard wall! potential. In this case, the electro
and hole have similar lateral wave functions that are de
mined by the geometry of the confinement and are not s
sitive to the particle masses. The 1D, strong-confinem
limit is approached by reducing the lateral dimension of
wire. Such a simple model cannot be used to describe e
tons in T-shaped wires.26 In T-shaped wires, the confinemen
to the wire region is determined both by the geometry of
barriers that define the structure and by the differences
tween the confinement energy in the T-shaped intersec
region and confinement energies in the arm and stem w
Because the energy differences are small, the confineme
weak, i.e., quasi-1D, and electron-hole correlation in the
eral directions, as well as along the wire axis, must
included.26 In simple models for quantum wires, one ge
metrical parameter, such as the wire radius, defines the
scale for the confinement. In simple wires, the particles
squeezed inside the wire as the confinement increase
T-shaped wires, the confinement is a complicated comp
tion between confinement along the stem and arm wells.
confinement is squishy. When the confinement along
well is increased, either by decreasing the well width or
allowing more pair correlation in that direction, confineme
along the orthogonal well can decrease, i.e., squeezing
exciton in one well pushes the exciton out of the wire in
the other well.26

To understand the effects of this squishy confinement
the electron and hole confinement energies and on the e
ton binding energies, exciton states in these structures m
be characterized fully. T-shaped wires have been charac
ized extensively by photoluminescence ~PL!
spectroscopies.1–25 Typical exciton PL spectra exhibit peak
due to PL from the stem and arm wells and from the wir
Spatially resolved PL4,8,14,18has been measured to separa
the wire PL from stem and arm well PL. The lowest-ener
PL peak is due to excitons trapped in the wires. Redsh
between the wire and well PL as large as 34–54 meV h
been observed.7,10,17,24This redshift is due partly to the re
duction in single-particle confinement energy when the el
©2001 The American Physical Society04-1
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trons and holes are trapped at the T-shaped intersections
partly to the enhancement of the electron-hole binding
ergy when the exciton is trapped in a wire. Binding energ
as large as 26 meV~six times the bulk binding energy! have
been estimated.12 These large redshifts strongly suggest th
the excitons have been trapped into 1D wire states. Meas
ments of the optical polarization anisotropy13,14 provide ad-
ditional evidence for the crossover from 2D to 1D sta
upon confinement of the exciton into the wires.

Exciton PL peak energies and transition strengths g
information about excitonic confinement in T-shaped wi
that depends on the combined effects of the squishy lat
confinement and the enhanced binding. To fully assess
degree of 1D quantization and better separate confinem
and binding effects, complementary information about
spatial extent of the exciton wave functions is required. R
cently, Someya, Akiyama, and Sakaki9,16,20studied the mag-
netophotoluminescence of T-shaped wires. They meas
the energy shiftDE of PL peaks with magnetic fieldB ap-
plied perpendicular to the wire axis and parallel to the st
well ~as shown in Fig. 1!. They related the measured ener
shift DE to a quadratic shift,DE5bB2, and extracted the
lateral size of the exciton by assuming thatb was the dia-
magnetic coefficient appropriate for excitons which are sy
metric about the magnetic field axis (b5e2r 2/8m wherem
and r 5A^x21z2& are the exciton reduced mass and rad
perpendicular toB). They analyzed wires made with larg
wells ~wire S1 : a510 nm, b512.5 nm and wireS2 : a
55.8 nm, b56.8 nm) and wires made with smaller wel
~wire S3 : a55.1 nm, b55.6 nm and wireS4 : a55.1 nm,
b55.1 nm). Excitons trapped at the T intersections ha
much smaller field-induced energy shifts than the exciton
the arm well. The weaker response of the trapped excito
the applied magnetic field suggests that the the trapped e
ton has a smaller lateral size than the exciton in the arm w
The extracted values ofr for the wire excitons in wiresS3
and S4 are smaller than the lateral size of an exciton in
ideal, strictly 2D quantum well. The analysis of Somey
Akiyama and Sakaki suggests that excitons in T-sha
wires can be squeezed below the minimum size realized
2D excitons in GaAs quantum wells. In this limit, the wire
must be 1D quantum wires.

Previously, we developed a theory for excitons
T-shaped quantum wires at zero magnetic field.26 The theory
used an anisotropic effective-mass model for the electr
and holes. Electron and hole single-particle states trappe
the T-shaped intersections were found exactly. The elect
hole pair binding in the exciton state was determined thro
a configuration interaction approach. A good description
exciton ground states was obtained. We found that includ
lateral electron-hole correlation as well as correlation alo
the wire axis was necessary to describe zero-field PL sh
observed for wire excitons.3,9 For the wires that we modeled
lateral wave function mixing was important. The wires cou
not be treated as strictly 1D. We also calculated the lat
size of the exciton state from the calculated exciton wa
function.26 The calculated lateral sizes were much larger th
the sizes extracted from the analysis of the magneto
experiments.9
11530
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This discrepancy between theory and analysis of the
perimental data could be explained in two ways. Either
zero-field theory provides a description of the exciton s
that is not as good as suggested by the good descriptio
the zero-field confinement-induced PL redshifts, or t
analysis of the experimental data is not adequate. The exp
mental data was taken for magnetic fields up to 12 T. Ho
ever, the analysis of the data was done assuming a weak
limit, where perturbation theory for the magnetic-field i
duced energy shiftsDE determines the diamagnetic contr
bution to the quadratic energy shift of the PL peak. The o
contribution to the quadratic energy shift included in t
analysis was the diamagnetic contribution. The second-o
contribution that arises from the paramagnetic van Vle
contribution, that is important when the exciton is not sy
metric about the magnetic field axis, was not included.

To better understand excitons in T-shaped wires, we p
vide in this paper a detailed theory for these magnetolu
nescence experiments. To develop a theory for magnet
citons in T-shaped wires, we extend the model that we u
for zero-field excitons to finite magnetic field. We find th
single-particle states exactly, now at finite field, and we
clude the electron-hole binding in a configuration interact
approach. This allows us to find exactly~for our model! the
trapped exciton states at each magnetic field and to calcu
the exciton energy shifts with applied magnetic field witho
recourse to perturbation theory.

This paper is organized as follows. In Sec. II, we descr
briefly the theory that we previously used for the zero-fie
case and discuss the results that show that three-dimens
~3D! correlation is needed to describe excitons in T-sha
wires. We then present the extension of the theory to fin
magnetic field. A key feature for any theory at finite field
the choice of gauge used to describe the magnetic field. I
exact calculation for the magnetic field effects, the resu
cannot depend on the choice of gauge. In perturba
theory, the choice of gauge can be important if the pertur
tion theory is not done completely. We show why perturb
tion theory based on the diamagnetic contribution fails
T-shaped wires. In Sec. III, we present our results. We fi
discuss exact calculations for single-particle states of
T-shaped wire in a magnetic field. We also provide an ex
calculation from perturbation theory of the second order c
tribution to the single-particle energies. We show that pert
bation theory, even if done correctly, fails forB.2 T. We
present results for the field dependence of the single-par
wave functions to show that perturbation theory fails beca
the confinement provided by the T-shaped junctions
squishy. We then present results for excitons in T-sha
wires in a magnetic field. We show that we get good agr
ment with experiment when we go beyond perturbat
theory and include magnetic field effects exactly in o
model. In Sec. IV, we present our conclusions.

II. THEORY

Various theories have been presented for zero-field e
ton states in T-shaped wires.21,26–33 Typically, the single-
particle electron and hole states trapped at a T-shaped i
4-2
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section are found by use of a single- or multi-band effecti
mass model and the Coulomb effects are included ei
variationally, in the Hartree-Fock approximation, or in
multiconfigurational approach. Our calculation for magn
toexcitons in T-shaped wires is based on an extension of
theory that we used to calculate exciton states atB50 to
finite field.26 We calculate exciton states for interactin
electron-hole pairs confined to a T-shaped intersection
finite magnetic field by first determining exactly the sing
particle states confined to the T-intersection in a magn
field and then using these single-particle states as a basi
a configuration-interaction calculation to include the pair
teraction. In the next section we briefly review the calcu
tion of exciton states atB50.

A. Exciton states atBÄ0

Our calculation proceeds in two step.26 First, we find the
electron and hole single-particle states bound to a finite a
of T-shaped wires, as shown in Fig. 1. We use an isoto
single-band, effective-mass Hamiltonian for the electr
single-particle states. To find hole single-particle states,
use an anisotropic, single-band, effective-mass Hamilton
We ignore the effects of band-mass discontinuity at the w
barrier interfaces and use the well masses throughout
structure. For these single-particle Hamiltonians, mot
along the wire axis, thez direction, is separable from th
lateral motion, thex and y directions. We find the bound
lateral, electron and hole statesfn

e andfn
h with energiesEn

e

andEn
h by solving,

H2D
e fn

e5F2
\2

2me
S ]2

]x2
1

]2

]y2D 1V2D
e Gfn

e5En
efn

e ,

~1!

H2D
h fn

h5S 2
\2

2mhx

]2

]x2
2

\2

2mhy

]2

]y2
1V2D

h D fn
h5En

hfn
h .

V2D
e and V2D

h are the two-dimensional T-shaped potenti
defined by the GaAs/AlGaAs band offsets,me is the isotro-
pic, conduction-band mass in GaAs andmhi is the hole mass
for direction i. Fourier grid techniques are used to find t

FIG. 1. Cross sectional view of an array of T-shaped wires.a is
the width of the@100# stem wells andb is the width of the@110#
arm well. The direction of the applied magnetic fieldB used for
magnetophotoluminescence is shown.
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bound states. The grid covers the area occupied by the s
bound to the wire array. Typically, an array withN wires has
N bound states.

These bound single-particle states are used to de
electron-hole pair states for configuration-interaction cal
lations to account for the pair binding. We find the excit
ground state by solving,

H3D
ex Cex5S H2D

e 1H2D
h 2

\2

2mz

]2

]z2
1V3D

eh D Cex5EexCex,

~2!

where z5ze2zh and 1/mz51/me11/mhz are the pair
relative-coordinate and reduced mass along the wire a
V3D

eh is the static, screened Coulomb interaction,

V3D
eh ~xe ,xh!5

qeqh

eA~xe2xh!21~ye2yh!21z2
, ~3!

whereqe andqh are the electron and hole charge ande is the
dielectric constant. We expand the exciton wave funct
Cex as

Cex~xe ,xh!5 (
n,m,hx ,hy ,hz

an,m,hx ,hy ,hz
fn

e~xe!

3fm
h ~xh!xhx ,hy ,hz

~xe ,xh!, ~4!

where the sum extends over the two-dimensional~2D! lateral
states bound to the wire array andxhx ,hy ,hz

accounts for any
pair correlation in each direction

xhx ,hy ,hz
~xe ,xh!5exp@2hx~xe2xh!2

2hy~ye2yh!22hzz
2#. ~5!

We diagonalize the Hamiltonian in this basis to find t
lowest exciton state and vary theh i included in the sum to
minimize the ground state energy. We include a suffici
number ofh ’s to obtain the 3D limit in large structures an
to correctly model both wells and wires. We use the sa
theory to describe exciton states in wires and in wells so
we can determined the energy difference between th
states to compare with the measured redshifts between
and wire PL peaks. Thehz determine the correlation alon
the wire axis. Thehx andhy determine any lateral correla
tion that is not included in the sum over lateral states.
study excitons in a single wire, the sum overn andm is over
the electron states and hole states bound to the wire. In
cases that we have studied, a single wire has only one bo
electron state and one bound hole state. When there is
one bound electron or hole state, no lateral correlation
included in the sum over bound lateral states. The late
correlation comes from mixing unbound lateral states w
the bound state. This mixing is accounted for in our calcu
tion by the sum of lateral correlation factors overhx andhy .
When we sethx5hy50, we include correlation only along
the wire axis, as would be appropriate for an ideal 1D qu
tum wire.
4-3
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TABLE I. Experimental9 and calculated exciton redshiftsDE at zero field for wiresS12S4. Experimental
quadratic coefficientbexp

9 and the calculated diamagnetic coefficientbL.

Wire DEexp (meV) bexp (meV/T2) Calculation DEcalc bL

S1 6 31 isotropic hole, 3D correlation 4.0 57
S2 11 23 isotropic hole, 3D correlation 10.8 37
S3 13 18 anisotropic hole, 3D correlation 11.8 77
S4 16 13 anisotropic hole, 3D correlation 16.2 69
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To model GaAs/AlGaAs structures, we usee513.1,me
50.067 and a conduction band/valence band offset ratio
62:38.34 Other similar choices fore to model polarization
effects and forme to model band parabolicity give simila
results for the exciton redshifts provided that the same mo
is used to find the exciton states in both wells and wires.
consider two models for the hole states. In the simp
model, we assume that the hole has an isotropic, heavy m
mh50.33. This model should work best for structures ma
from larger wells, such asS1 and S2, where confinemen
effects are weaker and the splitting of hole states by
confinement is less important than the mixing of states by
Coulomb interaction. We also consider a model with an
isotropic hole-mass, appropriate for a hole in the@110# arm
well, with mhx5mhz50.13 and mhy50.34. This model
should be most appropriate for structures made from sm
wells, such asS3 andS4, where the strong arm-well confine
ment splits the degenerate hole-states into heavy and
holes.

We find that the PL peak energy shift is well described
wires S1 and S2 by the model with the isotropic hole-mas
and in wiresS3 and S4 by the model with the anisotropi
hole-mass. Results are listed in Table I. This is consis
with our expectation that the isotropic model should wo
better for larger structures and the anisotropic model sho
work better for smaller structures. We find the exciton m
be modeled as a 3D exciton even though it is confined to
wire. Correlation must be included in all three dimensions
get a good description of the exciton energy shifts. Includ
only 1D correlation along the wire axis does not provide
enhanced pair binding when the exciton is trapped in
wire. For S3 andS4, the calculated binding provided by 1D
correlation is even weaker that the calculated binding for
exciton in the arm well. These results are described in de
in Ref. 26.

From the exciton ground state wave function, we cal
late the lateral spread of the exciton stater
5A^(xe2xh)21z2& and the diamagnetic contribution, foun
in the symmetric gauge by perturbation theory~see the next
section!, for the quadratic shift of the exciton energy wi
applied magnetic field,bL5e2r 2/8m. A comparison of the
experimental quadratic coefficient and the diamagnetic c
ficient calculated at zero field is given in Table I. The ener
shifts at B50 are well described by the theory. Howeve
perturbation theory gives a poor description of the quadr
coefficient. Ther extracted from experimentalbL for S3 and
S4 fall below the lower limit for the size of an exciton con
fined to an ideal 2D well.9 This suggests thatS3 andS4 are
small enough to be 1Dquantumwires. The calculatedr are
11530
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significantly higher than the experimentalr and are above the
2D limit for each wire. As we will show, the field depen
dence of the exciton states can be described if the field
pendence is determined exactly. We will also show that p
turbation theory fails to describe the field dependence of
exciton energies and cannot be used to extractr from the
experimental data. In the next section we describe the ex
sion of ourB50 theory to include a magnetic field.

B. Magnetoexcitons

To study magnetoexcitons, we extend the zero-fi
model defined by Eqs.~1!–~5! to include a magnetic field
The kinetic energy operator is

T3D
e,h5T3D

e 1T3D
h

5

S pe2
qe

c
A~xe! D 2

2me
1(

i
S ph2

qh

c
A~xh! D

i

3
1

mh,i
S ph2

qh

c
A~xh! D

i

. ~6!

The total electron-hole Hamiltonian is

HB5T3D
e 1T3D

h 1V2D
e 1V2D

h 1V3D
eh . ~7!

To proceed further, we must choose a gauge for the ve
potential. In principle, the results must be gauge invaria
Any gauge should be appropriate to use. In practice,
choice of gauge is important. Exact calculations can be s
plified by a choice of gauge which is consistent with t
symmetry of the problem, in our case, the 1D translatio
symmetry of the wire. A perturbative calculation to seco
order inB is necessarily gauge invariant only if all secon
order contributions are determined exactly. Again, the sy
metry of the problem determines which gauge to use to
culate all of the second-order contributions or which gau
to use for the most accurate approximate calculation of th
contributions.35,36

The symmetric gauge,

AL~x!5 1
2 B3x ~8!

is often used. In this gauge, the electron kinetic energy
B5Bŷ is
4-4
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T3D
L,e5

@pe2qeA
L~xe!/c#2

2me

5
pe

2

2me
2

qeBLy

mec
1

qe
2B2~xe

21ze
2!

8mec
2

. ~9!

Here Ly is the yth component of the angular momentu
operator. The hole kinetic energy is similar. This gauge
useful for studying interacting particles where the impos
symmetry, for example due to confinement, does not br
cylindrical symmetry about the field axis. In this case, t
states are eigenstates ofLy . Typically the ground state ha
Ly50 and the only second-order contribution to the ene
is the diamagnetic term. For an electron, the diamagn
contribution in the symmetric gauge is

bLB25
qe

2B2^xe
21ze

2&

8mec
2

. ~10!

The expectation value for the lateral size of the elect
ground-state determines the diamagnetic coefficient. Sim
expressions apply for the hole and the exciton.

For a T-shaped wire withB applied perpendicular to th
wire axis, translational symmetry along the wire axis is
consistent with the cylindrical symmetry about the field a
that is needed to simplify calculations done in the symme
gauge. Nonetheless, the diamagnetic contribution in the s
metric gauge has been used to interpret the experime
data.9 Thus, it is important to know how well this approx
mation describes magnetic field effects in T-shaped wire

In the symmetric gauge, the single-particle Hamiltoni
for a T-shaped wire is not separable into lateral and a
coordinates and each single-particle eigenstate must be f
as a 3D state rather than as the product of a 2D lateral s
and a 1D axial state. In a T-shaped wire, the single-part
states are not eigenstates ofLy . Perturbation theory is gaug
invariant if the perturbation theory is done exactly. In t
symmetric gauge, the first order contribution is proportio
to ^Ly& and typically is zero for the ground state. There a
two contributions in second order, the positive diamagne
term given by Eq.~10! and the paramagnetic Van Vlec
contribution. The paramagnetic contribution for an electr
in statei is,

b i ,para
L B25(

j Þ i

U K iUqeBLy

mec
U j L U2

E0i2E0 j
, ~11!

whereE0 j is the zero-field energy of statej. A similar ex-
pression holds for the hole. The paramagnetic contribu
vanishes if the statei is an eigenstate ofLy with Ly50. The
single-particle wire states are not eigenstates ofLy and the
paramagnetic contribution is finite. For a ground state,
paramagnetic contribution is negative, giving a total seco
order contribution which is less than the diamagnetic te
Consequently, a determination of the exciton size by rela
a measured quadratic shift to the diamagnetic contribu
will underestimate the exciton size.
11530
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A more useful gauge for studying T-shaped wires w
B5Bŷ is a gauge which preserves translational symme
along the wire axis,

Ap~x!52Bxẑ. ~12!

In this gauge, the electron kinetic energy is

T3D
p,e5

@pe2qeA
p~xe!/c#2

2me

5
pe

2

2me
2

qeBxepz

mec
1

qe
2B2xe

2

2mec
2

. ~13!

The hole kinetic energy is similar. In this gauge, the sing
particle electron and hole Hamiltonians are separable
lateral, (x,y), and axial, z, coordinates since the single
particle states are eigenstates ofpz . The quadratic contribu-
tion to the ground-state (pz50) single-particle energies fo
the electron and hole can be found exactly from the diam
netic contribution in this gauge. For the electron,

bpB25
qe

2B2^xe
2&

2mec
2

. ~14!

This exact expression for the quadratic contribution is diff
ent from the diamagnetic contribution given bybL in the
symmetric gauge@Eq. ~10!#. bp is proportional to the expec
tation value ofx2/2, while bL is proportional to the expecta
tion value of (x21z2)/8.

To find magnetoexciton states in T-shaped wires, we p
ceed as we did before in finding the zero-field states. We
find the electron single-particle 2D lateral states by use of
separable Hamiltonian given by Eq.~13!. We use a similar
equation to find the hole states. These 2D states are foun
the same 2D grid used for the zero-field states. The 2D st
depend onpz . We could define exciton states by mixin
single-particle states with differentpz . Instead, we define the
exciton states in terms of the 2D, lateral, single-particle,pz
50 states by use of Eqs.~4! and ~5!. The mixing of other
single-particle states withpzÞ0 into the exciton state is in
cluded by the use of the exponential correlation factors.
diagonalize the Hamiltonian for the interacting electron-h
pair in this basis to determine the magnetoexciton states

III. RESULTS

Two issues are addressed to analyze the magnetopho
minescence of T-shaped wires. First, we determine
magnetic-field dependence of single-particle energies
T-shaped wires. We compare the exact single-particle e
gies with the exact quadratic contribution obtained frombp

to determine the accuracy of the quadratic approximati
We compare theB dependence for wells and T-shaped wir
to show why the quadratic approximation is worse f
T-shaped wires. Second, we determine the magnetic-field
pendence of exciton energies in T-shaped wires.
4-5
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A. Single particle states in a magnetic field

The exact field dependence for the energy of an elec
confined in a quantum well~the 10 nm stem well inS1) is
shown in Fig. 2.B is applied parallel to the well. The exac
electron energy is compared with the exact diamagnetic
proximation @Eq. ~14!# and a best quadratic fit to the exa
calculation. From Fig. 2 we see that the exact quadratic
proximation and the best quadratic fit, obtained forB from 0
to 30 T, are nearly identical and agree very well with t
exact result. In this case, theB-field confinement is a weak
perturbation of the quantum well confinement and the q
dratic approximation is accurate to 30 T. For largeB, the
magnetic field confinement compresses the electron s
keeping the electron away from the well barriers. In this lim
the effect of the well confinement becomes negligible. W
see from Fig. 2 that the electron energy is well above the
cyclotron energy (\vc/2) even at 30 T. At 30 T, the cyclo
tron diameter is 6.6 nm, still just slightly less than the w
width.

The exact ground-state energy for an electron in theS1

T-shaped wire withB applied perpendicular to the wire ax
and parallel to the stem well is shown in Fig. 3. For co
parison, the exact quadratic approximation given by Eq.~14!
and other possible quadratic approximations are shown.
quadratic approximation given by Eq.~10! for the symmetric
gauge is undefined for a wire, just as it was undefined fo
well. The exact quadratic approximation dramatically ov
estimates the field-dependent energy shift for almost the
tire energy range ofB that is shown. The exact quadrat
approximation is accurate only for small fields (B&1 T).
Other quadratic approximations shown in Fig. 3 fail just
dramatically at largeB and underestimate the exact energy

FIG. 2. Comparison of the field dependence for the elect
energy in the T-shaped wireS1, stem well ofS1, and arm well of
S1 . B is applied perpendicular to the wire and parallel to the st
well. The stem-well width is 10 nm. The best quadratic fit and
exact quadratic contribution for an electron in the stem well
shown. The energy of a free, 3D electron is also shown.
11530
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smallB. The quadratic approximation is good only for sma
B and only if the exact diamagnetic contribution is used.

The magnetic-field dependence for the electron energ
a T-shaped wire~wire S1), in the corresponding stem wel
and in the corresponding arm well are compared in Fig
The largest energy shifts occur for the arm well. The smal
energy shifts occur for the stem well. The field-depende
for the electron energy in the T-shaped wire exhibits a cro
over between these two cases. For smallB, the electron
trapped at a T-shaped intersection is mostly in the arm w
When the field is increased, the electron is squeezed per
dicular to the field. This squeezing leads to an energy
crease. In a T-shaped wire, the electron can leak into
stem well to compensate this energy increase. Thus the fi
dependent single-particle energy-shift is weaker for
T-shaped wire than for an arm well. At largeB, the single-
particle energy for a T-shaped wire approaches the limit
the stem well.

Similar results apply for the other T-shaped wires. Figu
4 shows the field dependence for the electron energy in
smallest T-shaped wire,S4. Confinement is stronger inS4
than in the other wires and the quadratic approximat
should be best forS4. Even forS4, the quadratic approxima
tion fails for B.3 T. The error in the field-dependent energ
shift made by the exact quadratic approximation is sm
only for small fields (B,3 T for S4 , B,0.5 T for S1). At
10 T, the error is nearly 50% forS4 and nearly 300% forS1.
This comparison shows that the diamagnetic approximat
even if calculated exactly, should not be used to anal
energy shifts obtained for T-shaped wires at 10 T.

The weak field-dependence of the single-particle ene
in T-shaped wires and the poor agreement between the
dratic approximation and the exact energy in T-shaped w
are due to the squishy confinement provided by a T-sha
wire. The lateral confinement and any energy increase
duced by the applied field is compensated by leakage into

n

e
e

FIG. 3. Magnetic-field dependence of the electron energy in
T-shaped wireS1. The field is applied perpendicular to the wire an
parallel to the stem well. The exact energy is compared with
exact quadratic approximation. Other possible quadratic approxi
tions are shown also.
4-6
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stem well and the resulting energy decrease. Figure 5 sh
the size of the electron state alongx andy as a function ofB.
The size is taken to be the root mean square of the elec
position about the mean position of the electron. AsB in-
creases, the spread alongx decreases monotonically for eac
wire, while the spread alongy increases monotonically fo
each wire.

B. Magnetoexcitons

In this section, we show that the observed magnetic-fi
shifts for excitons trapped in T-shaped wires can be mode
when the single-particle energies are determined exactly
the Coulomb binding is included accurately. The quadra
approximation fails dramatically for single-particle energ

FIG. 4. Magnetic-field dependence of the electron energy in
T-shaped wireS4. The field is applied perpendicular to the wire an
parallel to the stem well. The exact energy is compared with
exact quadratic approximation. The agreement for smallB is shown
in the insert.

FIG. 5. Magnetic-field dependence of the electron ground-s
width alongx andy for T-shaped wiresS1 , S2, andS4.
11530
ws
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in T-shaped wires, even when the quadratic contribution
calculated exactly. In this section we also determine h
accurately the quadratic approximation describes magnet
citon energies in T-shaped wires.

The diamagnetic contribution given bybL is the exact
quadratic contribution for an exciton when the exciton is
eigenstate ofLy with Ly50. However, an exciton trapped i
a T-shaped wire is not an eigenstate ofLy . The diamagnetic
contribution given bybp is the exact quadratic contributio
for an exciton when the exciton is an eigenstate of the e
tron and holepz with pz50. However, the exciton is not a
eigenstate of the single-particle momenta. The second-o
paramagnetic contribution is negative for the ground state
the diamagnetic contribution overestimates the exact q
dratic approximation for the exciton ground state. T
smaller ofbL or bp provides the more accurate diamagne
approximation for the quadratic contribution. For thick
wires (S1 and S2), bL,bp so bL gives the better approxi
mation. For thinner wires (S3 andS4), bp,bL so bp gives
the better approximation. For wires made from wide we
the Coulomb interaction should be dominant and the sta
should be approximate eigenstates ofLy . For wires made
from thin wells, the single-particle confinement should
dominant and the exciton states should be approxim
eigenstates of the single-particlepz . The approximate sym-
metry of the exciton state determines which diamagnetic
proximation is better.

The best diamagnetic approximation for the exciton e
ergy shift, the exact single-particle energy shift for t
electron-hole pair and the energy shift calculated for a
correlated exciton are shown in Figs. 6 and 7 for T-shap
wires S12S4. Exciton energy shifts calculated for th
isotropic-hole model are shown forS1 and S2. The
anisotropic-hole model works better at zero field forS3 and
S4. We show the exciton energy shifts calculated with t
anisotropic-hole model forS3 andS4. The best diamagnetic
approximation shown in each figure is given by the sma
of the two diamagnetic coefficients that are determined w
the best zero-field model for the exciton. ForS1 andS2, the
best zero-field model has 3D correlation and an isotro
hole. ForS3 andS4, the best zero-field model has 3D corr
lation and an anisotropic hole. For comparison, the diam
netic approximation found including only the 1D correlatio
in the zero-field exciton state is shown. All results are plot
as energy shifts from the corresponding zero-field exci
energy. Also shown is the energy shift for the pair energy
the arm well, shifted upward for clarity by the single-partic
trapping energy of the pair at the T intersection.

The results are similar for each wire. The diamagne
contribution found from the model with only 1D correlatio
does not provide a reasonable description for the fie
dependence of the exciton energy for any wire modeled.
diamagnetic contribution found from the model with 3D co
relation is much smaller for each wire. This is another in
cation that correlation in all three dimensions must be
cluded for a proper description of the exciton states. Ev
when the correlation is included accurately, the best diam
netic contribution does not provide an adequate approxi
tion for the exciton energy. The best diamagnetic approxim

e

e

te
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GARNETT W. BRYANT AND Y. B. BAND PHYSICAL REVIEW B 63 115304
tion begins to deviate significantly from the experimen
data for fields of 2–4 T and is a factor of 2 too big at 10
The data obtained at 10 T was used to determine empiric
the exciton size. Our results show that such an analysis
not be done above 2–4 T.

The experimental data can be modeled accurately
vided that the exciton energy is calculated accurately at e
B. The single-particle energies~the electron-hole pair energ
shown in Figs. 6 and 7! and the pair binding must be dete
mined accurately to obtain a good model for the fie
dependence of the exciton energy shifts~curves labeled ex in
Figs. 6 and 7!. The single-particle energies overestimate
energy shift at lowB. The single-particle energy shifts ar
too high at low fields because the wave function compress
that is provided by pair-correlation is not included. At high
fields, the single-particle energies provide an energy s
that is lower than the energy shift obtained with the b
diamagnetic approximation. The field dependence of
single-particle energies at high fields is weaker than the fi
dependence predicted by the diamagnetic approximation
to the squishy confinement. The effects of the squishy c
finement are included when the single-particle energies
calculated exactly at each field. These effects are not
cluded when the zero-field exciton state is used to determ
the diamagnetic contribution in perturbation theory. Wh
pair correlation is included and the exciton states are fo
accurately at each field, the exciton energy shift follo

FIG. 6. The magnetic-field-induced energy shift for excito
trapped atS1 and S2 T-shaped wires: experimental shift9 ~solid
circles!, calculated shift for an uncorrelated pair inS1 ~dotted
curve!, calculated shift for a 3D-correlated exciton~lower solid
curve!, and the best approximation for the diamagnetic shift inS1

~dashed curves, as indicated, for 3D- and 1D-correlated excito!.
The best approximation for the diamagnetic shift forS1 is given by
bL. For comparison, the electron-hole pair energy in the arm we
shown.
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closely the experimental data. The pair correlation is nee
to correctly model the weak field dependence at low fiel
At high fields, the squishy confinement produces the we
response.

For large wires (S1 and S2), the isotropic hole mode
provides the best model for the exciton states at zero fi
The isotropic model works well because the effects of h
subband splitting in large wires is weak, especially for ex
ton states made from strongly correlated electron-hole pa
TheB dependence for large wires obtained from the isotro
model agrees well with the experimental data. For sma
wires (S3 and S4), the anisotropic hole model provides
better model for the exciton states at zero field. The an
tropic model works better because it includes the effects
hole subband splitting that become important in sma
structures. TheB dependence forS3 andS4 obtained with the
anisotropic-hole model~shown in Fig. 7! is more accurate
than the diamagnetic approximations. The isotropic-h
model forS3 andS4 provides aB dependence for the energ
shifts ~not shown in Fig. 7! that is even weaker than the shi
obtained from the anisotropic model. The shifts obtain
with isotropic model agree more closely with the data.
high fields, the squeezing provided by the field becomes
portant and the hole subband splitting provided by the str
ture becomes less important. Thus the isotropic model p
vides a better description at higher fields.

s

is

FIG. 7. The magnetic-field-induced energy shift for excito
trapped atS3 and S4 T-shaped wires: experimental shift9 ~points!,
calculated shifts for an uncorrelated pair inS3 ~dotted curve! and
for a 3D-correlated exciton~lower solid curve!, and the best ap-
proximation for the diamagnetic shift forS3. The best approxima-
tion for the diamagnetic shift forS3 is given bybp. For comparison,
the electron-hole pair energy in the arm well is shown. All calcu
tions are done for the anisotropic hole model.
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IV. CONCLUSION

Excitons in T-shaped wires typically are observed in ph
toluminescence. The energy shift between the PL peaks
wire and well excitons reveals the effect of the wire confin
ment on the electron and hole single-particle energies
the enhancement of the binding due to confinement.
cently, exciton magnetophotoluminescence of T-sha
wires has been observed to provide additional complem
tary information about exciton states in T wires.9,16,20 The
field-induced exciton energy shifts observed for wires w
smaller than the shifts for the corresponding quantum we
This was taken to imply strong squeezing of the exciton
wire confinement. The measured field-induced energy sh
were analyzed assuming a quadratic field dependence d
mined by the diamagnetic energy. The small sizes extra
from the data for the wire excitons implied that the wi
confinement was 1D quantum confinement. Our previ
calculations for exciton states in wires at zero field26 predict
a much larger size for the exciton states that is inconsis
with the experimental analysis. To understand the magn
photoluminescence experiments, we have done detailed
culations of the exciton states as a function of magnetic fi
The single-particle states are calculated exactly at each
and used as the basis set for accurate calculations of the
,
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binding. We find that accurate calculations for the excit
states in T wires can explain the weak field-induced sh
that have been observed. A comparison of the accurate
culations and the energy shifts obtained from the diam
netic contribution shows that the diamagnetic contribut
drastically overestimates the energy shifts in T wires. T
energy shifts cannot be analyzed based on a weak-field
turbation theory. If the T-wire confinement were 1D qua
tum confinement, then the magnetic-field-induced confi
ment could be treated as a weak perturbation. This is not
case in T-shaped wires. The T-wire confinement is we
squishy confinement rather than 1D quantum confinem
This weak confinement is easily disrupted by a magne
field. When a magnetic field is applied perpendicular to
arm well and the wire axis, the field squeezes the exci
state laterally in the arm well. Because the wire confinem
is squishy, the squeezed exciton can leak out of the wire
the stem well along the field axis. The leakage out of
wire compensates any squeezing induced by the field
produces the small energy shifts observed experimentall
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