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Radio-frequency output coupling of the Bose-Einstein condensate for atom lasers
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We develop the quantum-mechanical description of output coupling of macroscopic coherent matter waves
from a Bose-Einstein condensd®EC) via a radio-frequency field in the pulsed and cw limits for both strong
and weak field coupling. The theory is converted into a Fock state description to point out the stinfinlated
Bose particle nature of the output coupling. A useful analogy with the theory of molecular photodissociation
is used to explain the various regimes of output coupling BECs using radiation sources. We present specific
calculations of the rates of output coupling as a function of the number of Bose atoms in the condensate and
the frequency, detuning, and intensity of the radio-frequency fi&lti050-29479)00805-7

PACS numbgs): 03.75.Fi, 67.90+z, 71.35.Lk

I. INTRODUCTION their relative phasgl5] or time-dependent dynami¢$6,17).
Optical trapping can also produce multicomponent conden-
Experiments have conclusively demonstrated coherenceates, called spinor condensates by the MIT gridil}. The
properties of Bose-Einstein condensatB&ECs [1] and the molecular physics viewpoint which we develop for atom la-
radio-frequency(rf) radiation output coupling of BECE2].  Sers can also be applied to such trapped multicomponent spin
Hence, the concept of an atom lag&+9] based upon a BEC Systems, and we make brief note of such possibilities.
that is output-coupled via a rf field-stimulated process to Section Il points out the analogies with molecular photo-
produce macroscopic coherent matter waves has been mabsorption for pulsed and cw cases. Section Ill A reproduces
velously demonstrated experimentally. In this paper we exthe description of the impulsive limit used in Rg2] for the
plore the nature of the output coupling for atom lasers fronfase of an intense short rf pulse, and Section Il B describes
BECs by various types of rf radiation sources. We considefow to view atom laser output coupling as a stimulated
pulsed and cw atom lasers in several regimes of operatio®0sSonic process. Section Ill C presents the generalized de-
The output coupling can be described as stimulated emissic¥ription of broadband rf output coupling which reduces in
of bosonic atoms using rf radiation from a trapped spin stat@ppropriate limits to the treatment in Sec. Ill A and to the cw
of the atoms in the ground state of the harmonic trap to affeatment described in Sec. IV. Sec. V considers transitions
untrapped Spin state. Our approach makes use of the Stro[b@tween bound BECs. Numerical results for the weak-field
S|m||ar|ty between Condensate output Coup“ng and mo'ecunarrOW'band rf source case are described in Sec. VI, and a
lar photodissociation. The condensate is analogous to a magkonclusion and summary are given in Sec. VIL.
ecule which is induced to decay from a bound state into a
gontinuum or.scattering state. Th(_a analogy tq photodis;ocia— Il. ANALOGIES WITH MOLECULAR
tion theory brlngs. a new perspective to the different regimes PHOTODISSOCIATION THEORY
of rf output coupling of BECs. Time-independent and time-
dependent theories of photofragmentation have been devel- Let us briefly review the theory of molecular photodisso-
oped in detail for many years in the chemical physics com<iation, which involves the optical coupling of the ground
munity and have full bearing on the problem of rf output electronic state of a molecule in a given vibrational-
coupling of BECs. Our method of description simplifies therotational state to an excited dissociative electronic state. If a
theoretical treatment and leads to physical pictures of théroadband temporally short pulse is responsible for a mo-
dynamics based on Franck-Condon or wave-packet dynantecular transition(short compared with the period of vibra-
ics familiar to molecular physics. Our discussion is restrictedional motion of the molecu)ethe description of the absorp-
to the case of zero temperature, where the main effect dfon process is given in terms of a time-dependent
having a condensate is to add mean-field terms to the prop&chralinger equation treatment of wave-packet dynamics
gation equations describing the dynamics of BEC outputvith the transition moment operator coupling the wave-
coupling. Generalizations to the case of finite temperatur@acket on the ground state to a wave-packet on the excited
will be considered elsewhere. electronic state19,20. This approach is used in molecular
The atom laser results from a transition from a trappedhysics to describe femtosecond chemistry experiments.
spin state to an untrapped one, which is no longer boundSimilarly, the many-body condensate at zero temperature can
Multicomponent(or dua) condensates have also been madébe viewed as a giant polyatomic molecule in a single quan-
[10] and studied theoreticallj11-14 in which both spin  tum state. At the mean-field level of description of the con-
components are trapped by the confining fields and therefordenstate, all the vibrational modes of the BE®., all the
not outcoupled from the trap. Other recent experiments havatomic translational degrees of freedoate described by a
used two-photon processes to couple different internal spisingle mean-field orbital, and the wave function is symmetric
states to produce multicomponent condensates and studwyder interchange of the Bose particles. The vibrational fre-

1050-2947/99/5%)/38239)/$15.00 PRA 59 3823 ©1999 The American Physical Society



3824 Y. B. BAND, P. S. JULIENNE, AND M. TRIPPENBACH PRA 59

guency and time scale for condensate vibration are decreasedlise with detuning\ from rf resonancg27] couples atomic
by approximately 12 orders of magnitude from the corre-hyperfine stategl) and|2) with a coupling matrix element
sponding scales for ordinary molecular vibration. BEC out-% /2, where() is the Rabi frequency. The amplitude of
put coupling is an rf-induced fragmentation of the conden-these states evolves according to the Sdimger equation:
sate by a broadband temporally short rf puléhort

compared with the period of the atomic motion in the BEC o dfa; 0 Q2
trap. The time evolution is given in terms of a time- 'ﬁ& a, “Mapr A
dependent wave-packet treatment with the transition moment

operator coupling the wave packets for the ground and ougiate |1) evolves into the superpositionas(t)|1)
coupled states using a two-component time-dependent Non: 4,(t)|2), with a,(t) = cos@t/2) anda,(t) = sin(@u/2) for
linear Schrdinger equation(NLSE) [9,21]. This treatment detuningA = 0. TheN-particle wave function? of the zero-
reduces in the limit of a sufficiently intense, short rf pulse totemperature Bose condensate during and just after the rf

the treatment given ifi2] (see below , pulse is then given by the symmetric prod{},
In contrast to the above time-dependent picture, the usual

case in molecular spectroscopy involves transitions between N
discrete bound states of the ground and excited manifolds ‘I’(t)ZH B(i,x,t)

a

: (D

az

induced by cw light. If a pulse is used, its duration is long i=1

compared to the time of molecular vibration. If a narrow- N

band, long-temporal-duration light pulse or a single- -3 / N! a, ()N Nog(1)No
frequency cw beam is responsible for the transition, the de- NoZo VY (N=Np)!(Ny!t 2

scription is best given in terms of time-independent

equations for amplitudes of the vibrational states on the X|N—=N2,N), 2

ground and excited electronic states that are coupled via the

matter-field interaction Hamiltoniattime dependent for the wherei represents theth particle, and the mean-field orbital
case of the narrow-band pulse and time-independent for thé is the same for all particles,

case of the single-frequency cw sourc&he off-diagonal

matrix elements of the Hamiltonian are those of the molecu- o(i,x,1) = (x)[a(t)|1)+ay(t)[2)]. 3

lar transition dipole moment operator between the ground

and excited electronic states. These molecular matrix elesere ¢(x) describes the spatial shape of the initial unper-
ments, represented biy(),(t) (the Rabi frequency is not turbed condensate, and the second factor describes the evo-

time dependent for the cw caséncorporate the effects of |ution of the internal spin states under the influence of the
the transition dipole matrix element, the Franck-Condon facshort, intense rf pulse. In EQ), IN—N,,N,) is a state with

tors between time-independent states, and the electric field, = N—N, atoms in the trapped stat&) andN, atoms in
strength(for anE1 transition or the magnetic field strength the untrapped statg2). For A=0, the fraction of atoms
(for an M1 transition). In this view, photodissociation is & moved out of the initial statgl) oscillates with the single-
weak perturbation which dissociates the molecule, on a timgarticle Rabi  frequency Q  as (NL)/N=]|ay(t)|?

scale long compared with the vibrational time, with a Fermi= gjr2()t/2), and the probability for remaining in the origi-
golden rule rate which is proportional €%, In the case of nal ground state of the BEC is G¥§0t/2). ForA +0, simple
two optically coupled bound states, molecular Rabi oscillagnalytic expressions for the probabilitiela, (t)|?> and
tions occur on a time scale long compared to vibration. An| az(t)|2 are also well known. Experiment has shown that Eq.
analogous treatment to this molecular physics picture applie®) describes the output coupling in the limit where the line-
for the case of the rf outcoupling of a BEC or rf coupling of width of the rf field, Aw,, is large in comparison with the
two trapped states in a BEC. The main difference is that NoV¥pacingAE, between the quantized levels in the tréyay

the dynamics is nonlinear due to the interaction of the bosons. AE_/# (this condition is equivalent to the statement that
in the condensate; the nonlinear Salinger equation is used the rf pulse timet,, is short compared to the trap cycle
to determine the dynamics. Here we develop a driven equajme), and the Rabi frequency is large in comparison with the
tions treatment incorporating Franck-Condon factors alongyap frequency()> wy4p; thus, atoms everywhere in the trap
the lines originally drawn in molecular physi¢22-28,  are effectively resonant with the rf field. Equatié®) can
adapted here to treat the case of rf output coupling of @ BEGsq describe the coupling of two different bound spin states
when the rf is applied on a time scale long compared 10 they this Jimit, where|2) is also a state trapped by the magnetic

vibrational period in the trap. field. The physical picture behind this limit is that the fast rf
pulse transforms the internal states of the atoms rapidly com-
. BROADBAND rf ATOM LASER pared to the time scale of motion of the external center-of-

mass motion of the atoms, so that no condensate motion or
relaxation occurs during the pulse. Condensate relaxation oc-
The dynamics of rf coupling to a BEC was described incurs after the pulse is over, and the functigfx) in Eq. (3)

the limit of an intense broadband rf laser that couples differwill split on a long time scale into separate pieces for each
ent hyperfine atomic levels in RgR]. The rf coupling is due internal state 1 or 2. This is analogous to the short-pulse
to a resonant rf pulse of temporal duratid)gh|se<w{ralp, molecular photodissociation processes mentioned above that
wherew, is the trap harmonic frequendgyr suitable aver- are used in femtosecond chemistry experiments with ordi-
age frequncy for a three-dimensional anisotropic {tra®  nary polyatomic molecules.

A. Intense broadband rf atom laser
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B. Stimulated bosonic processes pectation value of the number operator over the state at time

It should be noted that BEC output coupling is a stimu-t)- The time-dependent Scldinger equation representing
lated process as far as the bosonic atoms are concéaaésl the rf coupling between t.he full systgm states can be yvrltten
the rf transfer of population from one bound BEC state to2S & coupled set of ordinary equations for the_z amplitudes,
anothey. It is not always evident in the one-particle picture An, .n,(1). There areN+1 such amplitudes which can be
used above where the stimulation factors occur. On the othdabeled by the first number in the K&d;,N,). These ampli-
hand, the stimulation factors are explicit in a Fock stae tudes are given(for the case ofAiAws>AE, and A()
number staterepresentation. In this section we will point out > w4y in the expression on the right-hand side of E2).
the connection between the one-particle and Fock-state viewrhe Schrdinger equation for the amplitudes of the Fock
points, and how the stimulation factors enter. The followingstates labeled by, {A,(t),«=0, ... N} is given by
analogy with the absorption of photons by atoms in an opti-
cal cavity is instructive. If the cavity modes are well estab- ,
lished, and if optical transitions in the medium are resonant 'ﬁaAa(t):BZO Ha pAs. ®)
with these photons, the presence of photons populating the
resonant modes stimulates the transition. For absorption qghere the Hamiltonian is tridiagonal, i.e., the only elements
emission processes of photons of a mode populatedijth  of the Hamiltonian which are nonzero are those with o
photons in the cavity, the probability amplitude for the pro- +1 andg= «. The off-diagonal elemem , 4 has the stimu-
cess is increased by a factor g, for absorption and |ation factor in i, i.e.H, = \aphQl2. ForA=0, the prob-
Vnpyt+1 for emission. By analogy, for bosonic atoms ini- ability for remaining in statéN,0) as a function of time is
tially populating a trap with all atoms in the trapped state|A ,_(t)|2= cogN(Qt/2) in the limit of AAws>AE, and
|1), removing an atom from this state has an amplitude thak ()> w,,,; this probability decays from unity in time with a
is proportional to the square root of the number of bosons iny|| width at half maximum of abouN 2 times that of the
this state. So, where is the bosonic stimulation in the atonhyerse Rabi frequency. This is due to the fact that stimula-
laser theory? tion is included in the treatment, as is clearly evident from

Let us assume that at zero temperature the initial system ihe Fock-state description. The Fock-state description is
the Fock ground state for the bosonic atoms in the rf field. equivalent to the single-particle treatment given in Sec. Il A.
Hence, initially, all atoms in the ground state occupy identi-The description in this section is just another way of writing
cal mean-field states and internal spin stafgs The initial  the equation for time evolution in a Fock basis. The Fock
state of the single BEC is given 4iN,0)I1a|Ni,, ), Where  basis state treatment of rf coupling of differevit- states in
the k and «, are the rf photon momentum and polarization the same~ manifold, as well as the treatment of rf coupling
indices, and the bosonic atom Fock st@te0) [see the right of states in different= manifolds (either directly or via a
hand side of Eq.(2)] now takes on the meaningN,0) stimulated Raman proces<an be easily worked out, and
=11 ,|1);. If only one field mode is present, then only one Will be equivalent to the treatment given above.
term in the product over photon field modes is nonzero. In
what follows, we shall drop the photon degrees of freedom C. Generalized description of broadband rf atom laser
when writing matrix elements. These degrees of freedom
wiII_ianuence the Rabi f_requencﬁ; for an absorption or the broadband casefAw>AE,, which is valid for
emission proces® contains a factor of Ny, Or \Mig, +1, frequency-chirped pulses as well as constant frequency ones,
respectively. In the interaction picture, after making thewhether or not the inequalit2> wyy, is met, is given in

rotating-wave approximation, the Hamiltonian matrix ele-terms of the two-component Gross-Pitaevskii equation
ments are given bj28,29 [9,21]:

(N=Np—1,Ny+ 1|H|N—=N,,N,) = V(N=N,) (N, + 1),
4

N

A more general description of the rf output coupling for

d
i (%0 = [Tyt Va(x) +Ug g (x,0) ]2

(N=Ny,NoH|N—=Ny,N,)=N,AA. (5) +UF (XD [P (x,1)

A Q4(x,1)
+—

Here A is the rf detuning and) is the single-atom Rabi 5

frequency associated with the coupling of the ground and
excited atomic states by the rf fie{d may or may not have P
Franck Condon factors depending upon the radio-frequency; ¢ _ 12 21122 2
bandwidth; see below The scaling of the matrix elements X o Pa(X D) =[T+Va(x)+Up {1, D)%+ UgTeha(x,1)]
with the numbers of atoms in the two spin statégsandN., R Qy(x.1)

follows directly from Bose-Einstein commutation relations FAAX) (X, 1) + L%(x't)_ (8)
and the properties of the condensate wave functions. 2

wZ(Xit)v (7)

The full state of the system evolves from the initial state y
via the interaction with the rf pulse. The full states of theHere T, is the kinetic energy operator andJg
system can be represented by e 1 Fock state$N;,N,) =(4wh?/m)NAJ are the atom-atom interaction strengths,
[again, the photon mo@® are suppressgdvhere at any time  proportional to thes-wave scattering Iengthsél, ASZ, and
(N)(t)+{N,)(t)=N (here the angular brackets indicate ex- A} for collisions of atomic states 41, 2+2, and 12,
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respectively, and}, denotes the Rabi frequency coupling originating from the electromagnetic field operator do not

atomic states 1 and 2. We assume that the scattering lengthave to be included in the matrix elemé¢@8]. The Franck-

are real, that is, inelastic collisional processes do not contrib€ondon amplitud€E|v,) appearing in the transition matrix

ute any loss processes. For generality, we have allowed foF is a free-bound overlap integral of the continuum output

the possibility that the Rabi frequency and the detuning caroupled state and the ground-state BEC wave funcfién.

be time and space dependent in EGR. and (8). In what  similar bound-bound overlap integral will be defined in Eq.

follows, we shall not make use of this full generality, i.e., for (28) below for the case of coupling of two different bound

simplicity we take these quantities to be independent ofpin stateg.

space while the rf pulse is on. Equation (11) can be derived by considering the time-
In the limit that the rf pulse timé,sc is short compared independent nonlinear Schiinger equation derived from

to the trap cycle time and the Rabi frequery is large, Eqgs.(7) and(8):

this treatment yields the same oscillatory behavior as the

dynamics described above in Sec. Il A. In this limit, the [Tt Va(x) =+ UgH g |2+ U ol T1(%)

solution to the two-component Gross-Pitaevskii equation can

be taken ashy(x,t)=a;(t) ¥(X), Wa(X,t)=a,(t)¥(x) with + (7 Q0o/2)2(x) =0, (12

#(X) being the initial BEC solution to the Gross-Pitaevskii 120, 12 122, 12

equation att=0. Substituting these forms fog;(x,t) into [Tt Va(X) + U | >+ UG ol “+ A — ] iha(x)

Egs. (7) and (8) and taking the inner product witkf(x) +(hQ/2) () =0, (13)

yields a set of coupled equations @y(t) anda,(t) which,

as we now demonstrate, is equivalent to Er. We first  \here 4 is the chemical potential of the BEC. Using the

introduce phase factors in the definition @f(t) by taking  assumption of weak coupling, where the amplitude of the

a;(t) =b;(t)exp(—i['dt' ¢;(t")), where ¢;(t) will be de-  outcoupled wavey, remains small compared to the ampli-

fined shortly. Furthermore, we introduce time-dependent copyde of the trapped staté;, Egs.(12) and (13) can be

efficientsU’ (t) = 2¢_, U} |a(t) |*. We now define the time-  treated by perturbation theory as follows. S ¢,|2=0

dependent phaseg;(t) as the following expectation values: gn the left hand side of Eq13) to obtain

[Tut Vao(X) + UG 1|2+ A — wlha(X) + (h.Q0/2) g1 (X) =0,

1 :
#1(0= 3 | @ COITHV, 00+ U000 P10, o

9
© and let ¢, in this resulting equation satisfy thendriven
Substituting the forms fo;(x,t) and using the assumption equation obtained by settirg,=0 andU$2| ¥,|2=0 in Eq.
that [4dt'[ #1(t') — ¢,(t')] can be neglected on the time (12). The driven equatioril4) for ¢, can be written as an
scalet<t,,s, We obtain the set of coupled equations, forintegral equation in terms of the Green’s function for the
b;(t), excited state. That is, the driven ScHitiger equatior(14)
can be solved to obtaig,, by converting it to an integral

dfby) [0 Qo/2) (b, equation, and the asymptotic form ¢ is proportional to
'hﬁ b, =h Qo2 A b,/ (10 the transition matrix. This is demonstrated in the next two
subsections for the 1D and spherically symmetric cases, re-
Equation(10) gives the same probabilities as Ed). spectively.

A. Narrow-band 1D model

IV. NARROW-BAND rf ATOM LASER . . .
' For the 1D case, Eq14) yields the integral equation

For AAw<AE,, only one(or a small numberof the .
vibrational states in the trap can be excited. The theoretical x :f de,G CBA XX VA28 (X 15
treatment is best composed in a time-independent formula- vo¥)= ) (w X XA Qo2 (X7, (19
tion similar to the treatment used in molecular spectroscopy
with narrowband laser sourcg®3], or the treatment of pre- where the Green'’s functio®(u—#A;x,x") is given by
dissociation of a molecular level into a dissociative con-
tinuum state[22]. In this regime, a steady-statew) atom G(u—hA;x,X")=(u—hA—H)"!
laser can be created, if the rate of loss of population of the g 14
BEC via output coupling is compensated for by pumping =h"(x)W(h™,h™)""h"(x-), (16)

(cooling atoms into the BEC. Provided the output coupling and x.= min(xx) and x.= maxx). The asymptotic

rateWo is small, namelyWoc=< wiap, the following pertur- form of the Green’s function is such that(x)—Th™(x)

bation theory expression for the rate of output coupling IScr large positivex with h* (x) having only right-outgoing

valid: LI I, : ) .
contributions for large positive, and incoming and outgoing
20 contributions for large negative The transition amplitude is
Woc=7|T|2, (11)  given by[24-26
/2

where T=(7Q¢/2)(E|vy). The radio-frequency is suffi- e
ciently low that the plane-wave factsy of exp(k-r;) W(h™,h™)

[Tacnoopon, @
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and the Wronskian is  W(h™,h")=2ik _32 @2
=2i\2m(u—%A)/%. The wave functiorh~(x) satisfies the S~ +Vao(r) + Uy [*+ A~ u|s(r)=0.
equation 2m dr
(24)
_ 32 2
—— —+Vo(X)+ U |2 +HA—pu |h™(x)=0, Equation(23) can be approximated by making the Thomas-
2m dx? Fermi approximation foy4,(r). Here, too, the integral in Eq.

(18 (23) can be calculated numerically by quadrature or an in-

) ) variant imbedding method can be used to calculate the tran-
and has only outgoing waves to the ldfirge negatives).  sjtion amplitude[25].

The integral in Eq(17) can be approximated for positive | setting up the spherically symmetric problem, it should
scattering length cases with large numbers of bosons by talse remembered that the wave functign is written asy,
ing the Thomas-Fermi approximation far,, obtained by — _r, (r)/r](1/\4w). Hence the equation for the uncoupled

neglecting the kinetic energy in the time-independent nonliny, 5, n4-state radial wave function is given by
ear Schrdinger equation fory, [30]:

_— U O]
P (X)= Llll(x) (19) mﬁ‘FVl(rH' E) ; +AA— | x1(r)=0.
oo (25

for values ofx, whereu—V,(x)>0 is positive andy(x)
=0 otherwise. For values of for which the square root
expression fory, is positive, Eq.(18) can be approximated

The coefficient of the nonlinear term in the radial equation is
divided by 4, and the nonlinear term contains a factor of
r 2. Note thaty,(r)/r is finite at the origin andy,(r) van-

by ishes at the origin, similarly for the coupled radial equations.
—h? d? Uéz Uéz - — V. rf TRANSITIONS BETWEEN BOUND BECs
m&ﬂLVz(x)——nVl(x)Jr—n,quﬁA h™(x)=0. 3
0 0 (20) The treatment for bound-bound transitioftsvo bound

condensates of different atomic spin states that kaoth

The integral can be calculated numerically by quadrature op@und can also be considered in the narrow-band and broad-

an invariant imbedding method can be used to calculate thB2nd rf transition limits. In the regime whefel w;<AE,
transition amplitudd25]. and the Rabi frequenc§} is small, the transition rates can

be well approximated by a perturbation theory treatment

which results in an equation similar to E@3), except that

the generalized Rabi frequency appearing in the new equa-
For the spherically symmetric case, the asymptotic forntion is given by

of ,(x) is Th™(x), whereT is the transition amplitude and

h*(x) contains only an outgoing wave contribution asymp- Q:QO<Ue|vg>_ (26)

totically [25,26. More specifically, the angular part of the

final driven wave functionj,(x) is isotropic, and the radial () contains a bound-bound overlap integral rather than the
part, x»(r), satisfies the equation free-bound overlap integral appearing in E@3). The
© bound-bound overlap integral for the mean-field motion of
Xz(r)=ﬁQOIZJ dr'G(u—AA;r,r')x,(r’), (21) the atoms corresponds to what is known as the bound-bound
0 Franck-Condon factor in the case of molecular transitions
induced by cw light fields. Here the transition is between
where x1(r)=+Amryy(r) and xa(r)=amr,(r). The  well defined quantum states of interriabin) and external

B. Narrow-band spherically symmetric model

Green’s functionG(u—#AA;r,r') is given by (coordinate degrees of freedom. Hence, for cw rf sources
coupling bound spin states, the actual frequency in the dy-
G(u—hA;r,r’)=(u—hA—H)"? namics,Q2, can be much smaller than,.

The regime ofi Aw>AE, and Q> wy,, results in an

— =1+
=s(ro W(s,h™)="h"(r>), (22 equation identical to Eq(1) for the time dynamics is given

where r _.=min(r,r’) and r-=max(,r'). The asymptotic by

form of ¢,(r) is Th™ (r) with the transition amplitude given d

by [25] 1 g2 = (R /2)a5(V), (27)
_ hQ2 [re , d
_—W(s,h+)fo dr's(r)x.(r’), (23 ih gzt =hiday()+ (i Qo2)ay(b). (28)

whereW(s,h")=—1, and the regular radial wave function In this impulsive limit where the time evolution occurs in a
s(r) satisfies the equation time short compared ta)t;alp, the subsequent relaxation of
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0.14 [ 111 | [ 111 | I - | I - | I - 15 111 | | | | | | | 1111 | 1111 | 1 111
. N = 3.6x10* o JEffective potential for output channel E
) 0.12 = (U0/41t = 20) - g(w V2=O) = Uol\lll(r)l2 = Uolxl(r)/rlz g
~p 010 e g0 =947 =
g 0.080 - g 7 -
= ] N = 1.8x10° - S :
A, 0.060 3 (U /4 = 100) - 8 3 -
= ] = g 5.0 —
D 0.040 =7.3x10° - m 3 .
- ] (U, /An=400) N=1x107 [ 3 C
0.020 (U, /4m= 5500)F 3 E
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Energy (in units of hcomp) T (in units of x, = (BW/mo, )™
FIG. 1. Bound-free Franck-Condon factor(E|vg)[? FIG. 2. Effective repulsive potential,(r)+Ug|4|? for u

=|T|%(hQo/2)? versus the asymptotic kinetic energy of the BE =9.47h wyap @and harmonic potential, (r) versus radial distance

particlesE (=u—#%A, whereA is the detuning of the rf from
producing output particles at kinetic energy for the four values [(E|vg>5f§wdr’sE(r "Yx1(r’)]. Note that as the frequency
of N~3.6x10f, 1.8<1(°, 7.3<10°, and 1.0<10". w, changedi.e., as the detuning change} the asymptotic
kinetic energyE of the ouput coupled particles changgss
the spatial part of the condensate wave function can be cafully determined in terms ofo,;, hence the distribution of
culated from Eqs(7) and (8), whereQ,=0 and the initial  energyE would be as function with E=—A were it not
conditions for the two components arg(X,t=tyusd  for the finite output coupling ratavhich determines the line-
=24 (tpuisd ¥1(x,t=0) and ¢p(X,t=1tpusd = a2(tpuisd ¥1(X,t  width). Our calculated results are valid provided, <1.
=0), wherey;(x,t=0) is the ground-state solution to theé  The maximum of the Franck-Condon factéice., the
time-independent Gross-Pitaevskii equation for the singleq,aximum of W,) occurs for values ofE~pu and just
component trap. . o slightly less thanu. The falling off of the Franck-Condon
A more general description of the rf trans.|t|on.s bet,Weenfactor forE away fromu is clearly illustrated in Fig. 1. This
bound BECs for the case dfAw>AE,, which is valid  yenendence of can be understood as follows. Figure 2
whether or not the inequalit o> w4y IS true, is given by a - ghows a number of potentials; the effective attractive
treatment identical to that in Sec. Il C. ground-state potential is given By, (r)+ Ug|y:|2 and the
effective repulsive potential for the final state is given by the
sum V,(r)+Ug|y1|? which equalsUg|;|? since V,(r)
=0. In the Thomas-Ferm(iTF) approximation the effective
attractive ground-state potential js for O<r<xqg and is
We present results of calculations for the rate of outputharmonic forr >x1g, Wherexg= \/zﬂ/mwfrap is the TF ra-
coupling using the narrow-band spherically symmetricdius. The integrand for the overlap integral which defines the
model for a**Na BEC, with Ag=52a, [31] (ap=0.0529  free-bound Franck-Condon factor is the prodsgtr) ys(r),
nm) andx, = V#i/Mwy,,=5 wm. The escaping particles are where the free wave functios:(r) for E=u—A is deter-
taken to havem:=0, so the repulsive potentidd,(r)=0.  mined from the repulsive potential and the bound wave func-
We shall assumal!= A%?=Al?, so only one atom-atom in- tion y,(r) is determined from the attractive potential. The
teraction strengthU,, occurs in our calculation. We con- effective repulsive potential in Fig. 2 is shown using both the
siderU,/(47)=20, 100, 400, and 5500 for whidi~3.6  TF approximation and the exac¢humerically computed
x10% 1.8x10°, 7.3x10°, and 1.0x10’ atoms, respec- BEC ground state. The line &= u— A in the figure crosses
tively. The calculated chemical potentials for these numberhis repulsive potential at the classical turning point for mo-
of atoms are approximatelyu=>5.15, 9.47, 16.4, and tion on this potential. IE~ u, this classical turning point, or
46.3 wyqp, respectively. The transition amplitude is com- Condon point, is near=0. The Condon point varies from
puted using Eq(23) and the rate for output coupling is de- larger to r=0 asE varies from 0 tou, and a real Condon
termined using Eq(11). Our calculations were carried out point no longer exists foE>u. The latter case defines a
using the numerically computed BEC ground state computedlassically forbidden Franck-Condon factor, which drops off
via a fast Fourier transform split operator method similar toexponentially with increasing, like an antistatic wing of a
the one used in Ref§32—-35, and the nonlinear eigenvalue pressure broadened transition. When the rf is tuned so that
and eigenfunction of the time-independent NLSE are obthe final-state energk is in the range 8.E<u, there is a
tained by turning time into imaginary time in the time- real Condon crossing point for the effective repulsive poten-
dependent NLSE and letting the solution relax to the groundial. When the rf is tuned so that the final-state enekgy
state. > u, there is no longer a real crossing point, and the integral
Figure 1 shows the free-bound Franck-Condon factordecays exponentially with increasig
[KElvg)?=|T|?/(1€/2)?, versus asymptotic kinetic energy  The output coupling rate per particle is given by Etf)
E of the bosonsE=u—#%A) for the four values oN used as

VI. NUMERICAL RESULTS FOR WEAK-FIELD
NARROWBAND OUTPUT COUPLING
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FIG. 3. Total BEC output coupling rate versus asymptotic ki-  FIG. 4. Bound-free Franck-Condon factor versus energy com-
netic energy of the bosons for the four values Nf=3.6  puted using the Thomas-Fermi approximation and the numerically
x10%, 1.8<10°, 7.3x10°, and 1.0x10". We have arbitrarily —computed BEC ground-state wave function.
taken the coupling strength such tHnﬂé/4=1 in Eq. (29).

(see Fig. %. In the intermediate energy regime, from about 4

27| Qg 2 hQé 5 t0 6 fiwyg,p, the integral calculated using TF is somewhat
Woc=7 T<E|Ug> :Tl <E|Ug>| . (29 larger than the results using the exact wave function because
the TF wave function is larger at the classical turning point
The total BEC output coupling rate is given by on the eff_ecpve repulsive potential. . .
The criterion for a cw atom laser is that the time for the
Waec o= NW, (30) atoms to leak out into the output coupled state must be long
,ou oc

compared to the oscillation period in the trap, that is,

and is plotted in Fig. 3 versus asymptotic kinetic enekgy
for the four values ofN that we have taken. Clearly the Woe< 0irap- (32)
output coupling rat&Vgec o ifor each value oN peaks at the
same value of energy 84,.; the energy of the peak as well
as the peak output coupling rate increase with increalling
Moreover, the width of the energy distribution becomes nar- The theory of atom laser output coupling for cw or weak
rower with increasing\. narrow-band rf fields and pulsed broadband rf fields is best
The interpretation of Fig. 3 is as follows. As the rf fre- developed using time-independent and time-dependent treat-
guency changes, the output coupling rate changes. The ements, respectivelyin analogy with the theory of photodis-
ergy distribution of the output coupled particles would b& a sociation of molecules discussed in Seg. We developed a
function at the kinetic energy determined by the rf frequencygeneral framework in which to describe atom laser output
wy, i.e., the energy of the output particles would be com-coupling of BECs, and showed how this theory reduced in
pletely determined for a given rf frequency, were it not for the limit of cw rf fields and the limit of intense broadband
the fact that the output coupling rate is finite. The width of

VIl. SUMMARY AND CONCLUSIONS

the kinetic energy distribution at a given kinetic ener@y 0.35 ool b b b by
(E=u—A) is related(but not equal to the inverse of the NLSE
calculated output coupling rate at this energy. The width will ~ 0-30 — —1F |
change with time[36], because the nature of the BEC 0.25 _

changes with time(if it is not replenished by continued u=9.47
evaporative cooling much like the width of the fluorescence + %% ] U /4n=100 —

spectrum of a large molecule changes with time because o 0.15 —
the relaxation of the molecule over times short compared=
with the decay time.

In order to check the validity of using the TF approxima- 0.050 —
tion in the calculation of the free-bound overlap integral, we

[}
\
H

compare in Fig. 4 the results of computing the integral using 00 T

TF and the numerically computed BEC ground-state wave L O N
function. At high energies the results using TF are very ac- 0 1 2 3 4 5 6
curate. At very low energies, the TF results in somewhat r (in units of x, = (h/mcomp)”z)

smaller values of the integral. This occurs because the exact
continuum wave function is larger around the true turning FIG. 5. Ground-state wave function versusomputed using the
point than the TF, and the bound-state wave function iSThomas-Fermi approximation and the numerically computed BEC
larger at this turning point than the turning point for the TF ground-state wave function.
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fields to much simpler formulations. We presented numericalf the bandwidth is small compared with the spacing between
results for the output coupling rate versus rf detuning andevels, the time dependence of the amplitude of individual
number of atoms in the BEC for narrow-band weak rf fields.mean-field eigenstates due to the presence of the rf field is
We find that(a) the rate is largest foE~ u (i.e., largest for determined, whereas if the bandwidth is large compared with
zero detuning and decreases for both positive and negatitee spacing between levels, one calculates the amplitudes of
detuning, (b) the rate increases at a rate less than linear witlthe hyperfine levels without explicitly determining the popu-
the number of particlegc) the width of the energy distribu- lation of the mean-field bound-state eigenstates.
tion becomes narrower with increasityy The reasons for The treatment here has been developed for zero-
these trends are thdt) for an energyE~ u, the classical temperature BECs at the level of a Hartree mean-field ap-
turning point is near =0, so one expects good overlap of the proximation. This treatment can be generalized to finite tem-
continuum wave function with the ground-state BEC waveperatures where it is essential to include the above mean-
function, and for energies lower or higher th&a=u the field contribution to BEC(even at zero temperatures there
overlap integral decreases, afiid the maximum of the free- will be a very small contribution from the above mean-field
bound overlap integralsupremum over energydecreases contribution in a more complete thegryFor the finite-
with N and the width of the distribution of energies as deter-temperature case, a density-matrix generalizafiocluding
mined by W,. becomes narrower. In the limit ciAw,s the above mean-field contributipf the theory presented
>AE, andf Q> w4, and forA =0, the probability of find-  here can be readily developed.
ing output coupled particles as a function of time is given by Our treatment can also be easily generalized to Raman
1—Ppo(t)=1— co$™(Qt/2), wheret is the time duration output coupling schemes to couple states that differ by two
for which the rf field is on. An analytic expression for the or zero units of azimuthal quantum number and angular mo-
probability can also be easily worked out in this limit for mentum quantum number, wherein pump and Stokes rf fields
A#0 in terms of the generalized Rabi frequen€y’ induce Raman hyperfine transitioftee intermediate state of
= JAZ+ Q2. For weaker Rabi frequencies, the temporal bethe Raman process can be off-resonant
havior is more complicated and must be calculated using the
two-component Gross-Pitaevskii equatif®21]. Stimula-
tion due to the population of states by the bosonic atoms is
explicitly included in the treatment, as is clearly evident This work was supported in part by grants from the U.S.-
from the Fock-state description presented in Sec. Il B. Israel Binational Science Foundation, the James Franck Bi-
For rf-induced transitions between bound levels of differ-national German-Israel Program in Laser-Matter Interaction
ent hyperfine structure states, the nature of the formulatioflY.B.B.), and the U.S. Office of Naval Resear¢hS.J). We
again depends on the linewidth of the rf field as comparedhank Mark Edwards, Bill Phillips, Yonathan Japha, and
with the spacing between the mean-field bound-state level¥alle-Antti Suominen for valuable discussions.
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