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Radio-frequency output coupling of the Bose-Einstein condensate for atom lasers
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We develop the quantum-mechanical description of output coupling of macroscopic coherent matter waves
from a Bose-Einstein condensate~BEC! via a radio-frequency field in the pulsed and cw limits for both strong
and weak field coupling. The theory is converted into a Fock state description to point out the stimulated~in
Bose particle! nature of the output coupling. A useful analogy with the theory of molecular photodissociation
is used to explain the various regimes of output coupling BECs using radiation sources. We present specific
calculations of the rates of output coupling as a function of the number of Bose atoms in the condensate and
the frequency, detuning, and intensity of the radio-frequency field.@S1050-2947~99!00805-7#

PACS number~s!: 03.75.Fi, 67.90.1z, 71.35.Lk
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I. INTRODUCTION

Experiments have conclusively demonstrated cohere
properties of Bose-Einstein condensates~BECs! @1# and the
radio-frequency~rf! radiation output coupling of BECs@2#.
Hence, the concept of an atom laser@3–9# based upon a BEC
that is output-coupled via a rf field-stimulated process
produce macroscopic coherent matter waves has been
velously demonstrated experimentally. In this paper we
plore the nature of the output coupling for atom lasers fr
BECs by various types of rf radiation sources. We consi
pulsed and cw atom lasers in several regimes of opera
The output coupling can be described as stimulated emis
of bosonic atoms using rf radiation from a trapped spin s
of the atoms in the ground state of the harmonic trap to
untrapped spin state. Our approach makes use of the st
similarity between condensate output coupling and mole
lar photodissociation. The condensate is analogous to a
ecule which is induced to decay from a bound state int
continuum or scattering state. The analogy to photodisso
tion theory brings a new perspective to the different regim
of rf output coupling of BECs. Time-independent and tim
dependent theories of photofragmentation have been de
oped in detail for many years in the chemical physics co
munity and have full bearing on the problem of rf outp
coupling of BECs. Our method of description simplifies t
theoretical treatment and leads to physical pictures of
dynamics based on Franck-Condon or wave-packet dyn
ics familiar to molecular physics. Our discussion is restric
to the case of zero temperature, where the main effec
having a condensate is to add mean-field terms to the pr
gation equations describing the dynamics of BEC out
coupling. Generalizations to the case of finite temperat
will be considered elsewhere.

The atom laser results from a transition from a trapp
spin state to an untrapped one, which is no longer bou
Multicomponent~or dual! condensates have also been ma
@10# and studied theoretically@11–14# in which both spin
components are trapped by the confining fields and there
not outcoupled from the trap. Other recent experiments h
used two-photon processes to couple different internal s
states to produce multicomponent condensates and s
PRA 591050-2947/99/59~5!/3823~9!/$15.00
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their relative phase@15# or time-dependent dynamics@16,17#.
Optical trapping can also produce multicomponent cond
sates, called spinor condensates by the MIT group@18#. The
molecular physics viewpoint which we develop for atom
sers can also be applied to such trapped multicomponent
systems, and we make brief note of such possibilities.

Section II points out the analogies with molecular pho
absorption for pulsed and cw cases. Section III A reprodu
the description of the impulsive limit used in Ref.@2# for the
case of an intense short rf pulse, and Section III B descri
how to view atom laser output coupling as a stimulat
bosonic process. Section III C presents the generalized
scription of broadband rf output coupling which reduces
appropriate limits to the treatment in Sec. III A and to the c
treatment described in Sec. IV. Sec. V considers transiti
between bound BECs. Numerical results for the weak-fi
narrow-band rf source case are described in Sec. VI, an
conclusion and summary are given in Sec. VII.

II. ANALOGIES WITH MOLECULAR
PHOTODISSOCIATION THEORY

Let us briefly review the theory of molecular photodiss
ciation, which involves the optical coupling of the groun
electronic state of a molecule in a given vibrationa
rotational state to an excited dissociative electronic state.
broadband temporally short pulse is responsible for a m
lecular transition~short compared with the period of vibra
tional motion of the molecule!, the description of the absorp
tion process is given in terms of a time-depende
Schrödinger equation treatment of wave-packet dynam
with the transition moment operator coupling the wav
packet on the ground state to a wave-packet on the exc
electronic states@19,20#. This approach is used in molecula
physics to describe femtosecond chemistry experime
Similarly, the many-body condensate at zero temperature
be viewed as a giant polyatomic molecule in a single qu
tum state. At the mean-field level of description of the co
denstate, all the vibrational modes of the BEC~i.e., all the
atomic translational degrees of freedom! are described by a
single mean-field orbital, and the wave function is symme
under interchange of the Bose particles. The vibrational
3823 ©1999 The American Physical Society
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quency and time scale for condensate vibration are decre
by approximately 12 orders of magnitude from the cor
sponding scales for ordinary molecular vibration. BEC o
put coupling is an rf-induced fragmentation of the conde
sate by a broadband temporally short rf pulse~short
compared with the period of the atomic motion in the BE
trap!. The time evolution is given in terms of a time
dependent wave-packet treatment with the transition mom
operator coupling the wave packets for the ground and
coupled states using a two-component time-dependent
linear Schro¨dinger equation~NLSE! @9,21#. This treatment
reduces in the limit of a sufficiently intense, short rf pulse
the treatment given in@2# ~see below!.

In contrast to the above time-dependent picture, the u
case in molecular spectroscopy involves transitions betw
discrete bound states of the ground and excited manif
induced by cw light. If a pulse is used, its duration is lo
compared to the time of molecular vibration. If a narro
band, long-temporal-duration light pulse or a sing
frequency cw beam is responsible for the transition, the
scription is best given in terms of time-independe
equations for amplitudes of the vibrational states on
ground and excited electronic states that are coupled via
matter-field interaction Hamiltonian~time dependent for the
case of the narrow-band pulse and time-independent for
case of the single-frequency cw source!. The off-diagonal
matrix elements of the Hamiltonian are those of the mole
lar transition dipole moment operator between the grou
and excited electronic states. These molecular matrix
ments, represented by\Vmol(t) ~the Rabi frequency is no
time dependent for the cw case!, incorporate the effects o
the transition dipole matrix element, the Franck-Condon f
tors between time-independent states, and the electric
strength~for an E1 transition! or the magnetic field strengt
~for an M1 transition!. In this view, photodissociation is
weak perturbation which dissociates the molecule, on a t
scale long compared with the vibrational time, with a Fer
golden rule rate which is proportional toVmol

2 . In the case of
two optically coupled bound states, molecular Rabi osci
tions occur on a time scale long compared to vibration.
analogous treatment to this molecular physics picture app
for the case of the rf outcoupling of a BEC or rf coupling
two trapped states in a BEC. The main difference is that n
the dynamics is nonlinear due to the interaction of the bos
in the condensate; the nonlinear Schro¨dinger equation is used
to determine the dynamics. Here we develop a driven eq
tions treatment incorporating Franck-Condon factors alo
the lines originally drawn in molecular physics@22–26#,
adapted here to treat the case of rf output coupling of a B
when the rf is applied on a time scale long compared to
vibrational period in the trap.

III. BROADBAND rf ATOM LASER

A. Intense broadband rf atom laser

The dynamics of rf coupling to a BEC was described
the limit of an intense broadband rf laser that couples diff
ent hyperfine atomic levels in Ref.@2#. The rf coupling is due
to a resonant rf pulse of temporal durationtpulse!v trap

21 ,
wherev trap is the trap harmonic frequency~or suitable aver-
age frequncy for a three-dimensional anisotropic trap!. A
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pulse with detuningD from rf resonance@27# couples atomic
hyperfine statesu1& and u2& with a coupling matrix elemen
\V/2, whereV is the Rabi frequency. The amplitude o
these states evolves according to the Schro¨dinger equation:

i\
d

dtS a1

a2
D 5\S 0 V/2

V/2 D
D S a1

a2
D , ~1!

State u1& evolves into the superpositiona1(t)u1&
1a2(t)u2&, with a1(t)5 cos(Vt/2) anda2(t)5 sin(Vt/2) for
detuningD50. TheN-particle wave functionC of the zero-
temperature Bose condensate during and just after th
pulse is then given by the symmetric product@2#,

C~ t !5)
i 51

N

f~ i ,x,t !

5 (
N250

N A N!

~N2N2!! ~N2!!
a1~ t !N2N2a2~ t !N2

3uN2N2 ,N2&, ~2!

wherei represents thei th particle, and the mean-field orbita
f is the same for all particles,

f~ i ,x,t !5c~x!@a1~ t !u1&1a2~ t !u2&]. ~3!

Here c(x) describes the spatial shape of the initial unp
turbed condensate, and the second factor describes the
lution of the internal spin states under the influence of
short, intense rf pulse. In Eq.~2!, uN2N2 ,N2& is a state with
N15N2N2 atoms in the trapped stateu1& andN2 atoms in
the untrapped stateu2&. For D50, the fraction of atoms
moved out of the initial stateu1& oscillates with the single-
particle Rabi frequency V as ^N2&/N5ua2(t)u2

5 sin2(Vt/2), and the probability for remaining in the orig
nal ground state of the BEC is cos2N(Vt/2). ForDÞ0, simple
analytic expressions for the probabilitiesua1(t)u2 and
ua2(t)u2 are also well known. Experiment has shown that E
~2! describes the output coupling in the limit where the lin
width of the rf field,Dv rf , is large in comparison with the
spacingDEv between the quantized levels in the trap,Dv rf
@DEv /\ ~this condition is equivalent to the statement th
the rf pulse timetpulse is short compared to the trap cyc
time!, and the Rabi frequency is large in comparison with t
trap frequency,V@v trap; thus, atoms everywhere in the tra
are effectively resonant with the rf field. Equation~2! can
also describe the coupling of two different bound spin sta
in this limit, whereu2& is also a state trapped by the magne
field. The physical picture behind this limit is that the fast
pulse transforms the internal states of the atoms rapidly c
pared to the time scale of motion of the external center-
mass motion of the atoms, so that no condensate motio
relaxation occurs during the pulse. Condensate relaxation
curs after the pulse is over, and the functionc(x) in Eq. ~3!
will split on a long time scale into separate pieces for ea
internal state 1 or 2. This is analogous to the short-pu
molecular photodissociation processes mentioned above
are used in femtosecond chemistry experiments with o
nary polyatomic molecules.
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B. Stimulated bosonic processes

It should be noted that BEC output coupling is a stim
lated process as far as the bosonic atoms are concerned~as is
the rf transfer of population from one bound BEC state
another!. It is not always evident in the one-particle pictu
used above where the stimulation factors occur. On the o
hand, the stimulation factors are explicit in a Fock state~or
number state! representation. In this section we will point o
the connection between the one-particle and Fock-state v
points, and how the stimulation factors enter. The followi
analogy with the absorption of photons by atoms in an o
cal cavity is instructive. If the cavity modes are well esta
lished, and if optical transitions in the medium are reson
with these photons, the presence of photons populating
resonant modes stimulates the transition. For absorptio
emission processes of photons of a mode populated withnph
photons in the cavity, the probability amplitude for the pr
cess is increased by a factor ofAnph for absorption and
Anph11 for emission. By analogy, for bosonic atoms in
tially populating a trap with all atoms in the trapped sta
u1&, removing an atom from this state has an amplitude t
is proportional to the square root of the number of boson
this state. So, where is the bosonic stimulation in the a
laser theory?

Let us assume that at zero temperature the initial syste
the Fock ground state for theN bosonic atoms in the rf field
Hence, initially, all atoms in the ground state occupy iden
cal mean-field states and internal spin statesu1&. The initial
state of the single BEC is given byuN,0&)kaunkak

&, where

the k and ak are the rf photon momentum and polarizati
indices, and the bosonic atom Fock stateuN,0& @see the right
hand side of Eq.~2!# now takes on the meaninguN,0&
5) i 51

N u1& i . If only one field mode is present, then only on
term in the product over photon field modes is nonzero
what follows, we shall drop the photon degrees of freed
when writing matrix elements. These degrees of freed
will influence the Rabi frequencyV; for an absorption or
emission processV contains a factor ofAnkak

or Ankak
11,

respectively. In the interaction picture, after making t
rotating-wave approximation, the Hamiltonian matrix e
ments are given by@28,29#

^N2N221,N211uHuN2N2 ,N2&5A~N2N2!~N211!\V,
~4!

^N2N2 ,N2uHuN2N2 ,N2&5N2\D. ~5!

Here D is the rf detuning andV is the single-atom Rab
frequency associated with the coupling of the ground a
excited atomic states by the rf field~it may or may not have
Franck Condon factors depending upon the radio-freque
bandwidth; see below!. The scaling of the matrix element
with the numbers of atoms in the two spin states,N1 andN2 ,
follows directly from Bose-Einstein commutation relatio
and the properties of the condensate wave functions.

The full state of the system evolves from the initial sta
via the interaction with the rf pulse. The full states of t
system can be represented by theN11 Fock statesuN1 ,N2&
@again, the photon mode~s! are suppressed# where at any time
^N1&(t)1^N2&(t)5N ~here the angular brackets indicate e
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pectation value of the number operator over the state at t
t). The time-dependent Schro¨dinger equation representin
the rf coupling between the full system states can be writ
as a coupled set of ordinary equations for the amplitud
AN1 ,N2

(t). There areN11 such amplitudes which can b

labeled by the first number in the ketuN1 ,N2&. These ampli-
tudes are given~for the case of\Dv rf.DEv and \V
.v trap) in the expression on the right-hand side of Eq.~2!.
The Schro¨dinger equation for the amplitudes of the Fo
states labeled bya, $Aa(t),a50, . . . ,N% is given by

i\
d

dt
Aa~ t !5 (

b50

N

Ha,bAb , ~6!

where the Hamiltonian is tridiagonal, i.e., the only eleme
of the Hamiltonian which are nonzero are those withb5a
61 andb5a. The off-diagonal elementHa,b has the stimu-
lation factor in it, i.e.,Ha,b5Aab\V/2. ForD50, the prob-
ability for remaining in stateuN,0& as a function of time is
uAa50(t)u25 cos2N(Vt/2) in the limit of \Dv rf.DEv and
\V@v trap; this probability decays from unity in time with a
full width at half maximum of aboutN21 times that of the
inverse Rabi frequency. This is due to the fact that stimu
tion is included in the treatment, as is clearly evident fro
the Fock-state description. The Fock-state description
equivalent to the single-particle treatment given in Sec. III
The description in this section is just another way of writi
the equation for time evolution in a Fock basis. The Fo
basis state treatment of rf coupling of differentMF states in
the sameF manifold, as well as the treatment of rf couplin
of states in differentF manifolds ~either directly or via a
stimulated Raman process!, can be easily worked out, an
will be equivalent to the treatment given above.

C. Generalized description of broadband rf atom laser

A more general description of the rf output coupling f
the broadband case,\Dv rf.DEv , which is valid for
frequency-chirped pulses as well as constant frequency o
whether or not the inequalityV@v trap is met, is given in
terms of the two-component Gross-Pitaevskii equat
@9,21#:

i\
]

]t
c1~x,t !5@Tx1V1~x!1U0

11uc1~x,t !u2

1U0
12uc2~x,t !u2#c1~x,t !

1
\V0~x,t !

2
c2~x,t !, ~7!

i\
]

]t
c2~x,t !5@Tx1V2~x!1U0

12uc1~x,t !u21U0
22uc2~x,t !u2

1\D~x,t !#c2~x,t !1
\V0~x,t !

2
c1~x,t !. ~8!

Here Tx is the kinetic energy operator andU0
i j

5(4p\2/m)NA0
i j are the atom-atom interaction strength

proportional to thes-wave scattering lengthsA0
11, A0

22, and
A0

12 for collisions of atomic states 111, 212, and 112,
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respectively, andV0 denotes the Rabi frequency couplin
atomic states 1 and 2. We assume that the scattering len
are real, that is, inelastic collisional processes do not con
ute any loss processes. For generality, we have allowed
the possibility that the Rabi frequency and the detuning
be time and space dependent in Eqs.~7! and ~8!. In what
follows, we shall not make use of this full generality, i.e., f
simplicity we take these quantities to be independent
space while the rf pulse is on.

In the limit that the rf pulse timetpulse is short compared
to the trap cycle time and the Rabi frequencyV0 is large,
this treatment yields the same oscillatory behavior as
dynamics described above in Sec. III A. In this limit, th
solution to the two-component Gross-Pitaevskii equation
be taken asc1(x,t)5a1(t)c(x), c2(x,t)5a2(t)c(x) with
c(x) being the initial BEC solution to the Gross-Pitaevs
equation att50. Substituting these forms forc j (x,t) into
Eqs. ~7! and ~8! and taking the inner product withc(x)
yields a set of coupled equations fora1(t) anda2(t) which,
as we now demonstrate, is equivalent to Eq.~1!. We first
introduce phase factors in the definition ofaj (t) by taking
aj (t)5bj (t)exp„2 i * tdt8f j (t8)…, where f j (t) will be de-
fined shortly. Furthermore, we introduce time-dependent
efficientsU j (t)5(k51

2 U0
j ,kuak(t)u2. We now define the time-

dependent phasesf j (t) as the following expectation values

f j~ t !5
1

\E d3xc* ~x!@Tx1Vj~x!1U j~ t !uc~x!u2#c~x!.

~9!

Substituting the forms forc j (x,t) and using the assumptio
that *0

t dt8@f1(t8)2f2(t8)# can be neglected on the tim
scale t!tpulse, we obtain the set of coupled equations, f
bj (t),

i\
d

dtS b1

b2
D 5\S 0 V0/2

V0/2 D
D S b1

b2
D . ~10!

Equation~10! gives the same probabilities as Eq.~1!.

IV. NARROW-BAND rf ATOM LASER

For \Dv rf,DEv , only one ~or a small number! of the
vibrational states in the trap can be excited. The theoret
treatment is best composed in a time-independent form
tion similar to the treatment used in molecular spectrosc
with narrowband laser sources@23#, or the treatment of pre
dissociation of a molecular level into a dissociative co
tinuum state@22#. In this regime, a steady-state~cw! atom
laser can be created, if the rate of loss of population of
BEC via output coupling is compensated for by pumpi
~cooling! atoms into the BEC. Provided the output coupli
rateWoc is small, namely,Woc!v trap, the following pertur-
bation theory expression for the rate of output coupling
valid:

Woc5
2p

\
uTu2, ~11!

where T5(\V0/2)^Euvg&. The radio-frequency is suffi
ciently low that the plane-wave factor~s! of exp(ikrf•r i)
ths
b-
or
n

f

e

n

-

al
a-
y

-

e

s

originating from the electromagnetic field operator do n
have to be included in the matrix element@28#. The Franck-
Condon amplitudêEuvg& appearing in the transition matri
T is a free-bound overlap integral of the continuum outp
coupled state and the ground-state BEC wave function.@A
similar bound-bound overlap integral will be defined in E
~28! below for the case of coupling of two different boun
spin states.#

Equation ~11! can be derived by considering the tim
independent nonlinear Schro¨dinger equation derived from
Eqs.~7! and ~8!:

@Tx1V1~x!2m1U0
11uc1u21U0

12uc2u2#c1~x!

1~\V0/2!c2~x!50, ~12!

@Tx1V2~x!1U0
12uc1u21U0

22uc2u21\D2m#c2~x!

1~\V0/2!c1~x!50, ~13!

where m is the chemical potential of the BEC. Using th
assumption of weak coupling, where the amplitude of
outcoupled wavec2 remains small compared to the amp
tude of the trapped statec1 , Eqs. ~12! and ~13! can be
treated by perturbation theory as follows. SetU0

22uc2u250
on the left hand side of Eq.~13! to obtain

@Tx1V2~x!1U0
12uc1u21\D2m#c2~x!1~\V0/2!c1~x!50,

~14!

and let c1 in this resulting equation satisfy theundriven
equation obtained by settingV050 andU0

12uc2u250 in Eq.
~12!. The driven equation~14! for c2 can be written as an
integral equation in terms of the Green’s function for t
excited state. That is, the driven Schro¨dinger equation~14!
can be solved to obtainc2 , by converting it to an integra
equation, and the asymptotic form ofc2 is proportional to
the transition matrix. This is demonstrated in the next t
subsections for the 1D and spherically symmetric cases
spectively.

A. Narrow-band 1D model

For the 1D case, Eq.~14! yields the integral equation

c2~x!5E
2`

1`

dx8G~m2\D;x,x8!\V0/2c1~x8!, ~15!

where the Green’s functionG(m2\D;x,x8) is given by

G~m2\D;x,x8!5~m2\D2H !21

5h1~x,!W~h2,h1!21h1~x.!, ~16!

and x,5 min(x,x8) and x.5 max(x,x8). The asymptotic
form of the Green’s function is such thatc2(x)→Th1(x)
for large positivex with h1(x) having only right-outgoing
contributions for large positivex, and incoming and outgoing
contributions for large negativex. The transition amplitude is
given by @24–26#

T5
\V0/2

W~h2,h1!
E

2`

1`

dx8h2~x8!c1~x8!, ~17!
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and the Wronskian is W(h2,h1)52ik
52iA2m(m2\D)/\. The wave functionh2(x) satisfies the
equation

S 2\2

2m

d2

dx2
1V2~x!1U0

12uc1u21\D2m D h2~x!50,

~18!

and has only outgoing waves to the left~large negativex).
The integral in Eq.~17! can be approximated for positiv
scattering length cases with large numbers of bosons by
ing the Thomas-Fermi approximation forc1 , obtained by
neglecting the kinetic energy in the time-independent non
ear Schro¨dinger equation forc1 @30#:

c1~x!5Am2V1~x!

U0
11

~19!

for values ofx, wherem2V1(x).0 is positive andc1(x)
50 otherwise. For values ofx for which the square roo
expression forc1 is positive, Eq.~18! can be approximated
by

S 2\2

2m

d2

dx2
1V2~x!2

U0
12

U0
11

V1~x!1
U0

12

U0
11

m1\D D h2~x!50.

~20!

The integral can be calculated numerically by quadrature
an invariant imbedding method can be used to calculate
transition amplitude@25#.

B. Narrow-band spherically symmetric model

For the spherically symmetric case, the asymptotic fo
of c2(x) is Th1(x), whereT is the transition amplitude an
h1(x) contains only an outgoing wave contribution asym
totically @25,26#. More specifically, the angular part of th
final driven wave functionc2(x) is isotropic, and the radia
part,x2(r ), satisfies the equation

x2~r !5\V0/2E
0

`

dr8G~m2\D;r ,r 8!x1~r 8!, ~21!

where x1(r )5A4prc1(r ) and x2(r )5A4prc2(r ). The
Green’s functionG(m2\D;r ,r 8) is given by

G~m2\D;r ,r 8!5~m2\D2H !21

5s~r ,!W~s,h1!21h1~r .!, ~22!

where r ,5min(r,r8) and r .5max(r,r8). The asymptotic
form of c2(r ) is Th1(r ) with the transition amplitude given
by @25#

T5
\V0/2

W~s,h1!
E

0

1`

dr8s~r 8!x1~r 8!, ~23!

whereW(s,h1)521, and the regular radial wave functio
s(r ) satisfies the equation
k-

-

r
e

-

S 2\2

2m

d2

dr2
1V2~r !1U0

12uc1u21\D2m D s~r !50.

~24!

Equation~23! can be approximated by making the Thoma
Fermi approximation forx1(r ). Here, too, the integral in Eq
~23! can be calculated numerically by quadrature or an
variant imbedding method can be used to calculate the t
sition amplitude@25#.

In setting up the spherically symmetric problem, it shou
be remembered that the wave functionc1 is written asc1

5@x1(r )/r #(1/A4p). Hence the equation for the uncouple
bound-state radial wave function is given by

F2\2

2m

d2

dr2
1V1~r !1S U0

11

4p D Ux1~r !

r U2

1\D2mGx1~r !50.

~25!

The coefficient of the nonlinear term in the radial equation
divided by 4p, and the nonlinear term contains a factor
r 22. Note thatx1(r )/r is finite at the origin andx1(r ) van-
ishes at the origin, similarly for the coupled radial equatio

V. rf TRANSITIONS BETWEEN BOUND BECs

The treatment for bound-bound transitions~two bound
condensates of different atomic spin states that areboth
bound! can also be considered in the narrow-band and bro
band rf transition limits. In the regime where\Dv rf,DEv
and the Rabi frequencyV0 is small, the transition rates ca
be well approximated by a perturbation theory treatm
which results in an equation similar to Eq.~23!, except that
the generalized Rabi frequency appearing in the new eq
tion is given by

V5V0^veuvg&. ~26!

V contains a bound-bound overlap integral rather than
free-bound overlap integral appearing in Eq.~23!. The
bound-bound overlap integral for the mean-field motion
the atoms corresponds to what is known as the bound-bo
Franck-Condon factor in the case of molecular transitio
induced by cw light fields. Here the transition is betwe
well defined quantum states of internal~spin! and external
~coordinate! degrees of freedom. Hence, for cw rf sourc
coupling bound spin states, the actual frequency in the
namics,V, can be much smaller thanV0 .

The regime of\Dv rf@DEv and V0@v trap results in an
equation identical to Eq.~1! for the time dynamics is given
by

i\
d

dt
a1~ t !5~\V0/2!a2~ t !, ~27!

i\
d

dt
a1~ t !5\Da2~ t !1~\V0/2!a1~ t !. ~28!

In this impulsive limit where the time evolution occurs in
time short compared tov trap

21 , the subsequent relaxation o
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the spatial part of the condensate wave function can be
culated from Eqs.~7! and ~8!, whereV050 and the initial
conditions for the two components arec1(x,t5tpulse)
5a1(tpulse)c1(x,t50) and c2(x,t5tpulse)5a2(tpulse)c1(x,t
50), wherec1(x,t50) is the ground-state solution to th
time-independent Gross-Pitaevskii equation for the sing
component trap.

A more general description of the rf transitions betwe
bound BECs for the case of\Dv rf.DEv , which is valid
whether or not the inequalityV0@v trap is true, is given by a
treatment identical to that in Sec. III C.

VI. NUMERICAL RESULTS FOR WEAK-FIELD
NARROWBAND OUTPUT COUPLING

We present results of calculations for the rate of out
coupling using the narrow-band spherically symmet
model for a 23Na BEC, with A0552a0 @31# (a050.0529
nm! andxr5A\/mv trap55 mm. The escaping particles ar
taken to havemF50, so the repulsive potentialV2(r )50.
We shall assumeA0

115A0
225A0

12, so only one atom-atom in
teraction strength,U0 , occurs in our calculation. We con
siderU0 /(4p)520, 100, 400, and 5500 for whichN'3.6
3104, 1.83105, 7.33105, and 1.03107 atoms, respec-
tively. The calculated chemical potentials for these numb
of atoms are approximatelym55.15, 9.47, 16.4, and
46.3\v trap, respectively. The transition amplitude is com
puted using Eq.~23! and the rate for output coupling is de
termined using Eq.~11!. Our calculations were carried ou
using the numerically computed BEC ground state compu
via a fast Fourier transform split operator method similar
the one used in Refs.@32–35#, and the nonlinear eigenvalu
and eigenfunction of the time-independent NLSE are
tained by turning time into imaginary time in the time
dependent NLSE and letting the solution relax to the grou
state.

Figure 1 shows the free-bound Franck-Condon fac
z^Euvg& z25uTu2/(\V0/2)2, versus asymptotic kinetic energ
E of the bosons (E5m2\D) for the four values ofN used

FIG. 1. Bound-free Franck-Condon factor,z^Euvg& z2

5uTu2/(\V0/2)2 versus the asymptotic kinetic energy of the B
particlesE (5m2\D, where D is the detuning of the rf from
producing output particles at kinetic energym) for the four values
of N'3.63104, 1.83105, 7.33105, and 1.03107.
l-

-

n

t

rs

d

-

d

r,

@^Euvg&[*0
1`dr8sE(r 8)x1(r 8)#. Note that as the frequenc

v rf changes~i.e., as the detuningD changes!, the asymptotic
kinetic energyE of the ouput coupled particles changes.E is
fully determined in terms ofv rf , hence the distribution of
energyE would be ad function with E5m2D were it not
for the finite output coupling rate~which determines the line
width!. Our calculated results are valid providedWoc!1.

The maximum of the Franck-Condon factor~i.e., the
maximum of Woc) occurs for values ofE'm and just
slightly less thanm. The falling off of the Franck-Condon
factor forE away fromm is clearly illustrated in Fig. 1. This
dependence onE can be understood as follows. Figure
shows a number of potentials; the effective attract
ground-state potential is given byV1(r )1U0uc1u2 and the
effective repulsive potential for the final state is given by t
sum V2(r )1U0uc1u2 which equalsU0uc1u2 since V2(r )
50. In the Thomas-Fermi~TF! approximation the effective
attractive ground-state potential ism for 0<r<xTF and is
harmonic forr .xTF , wherexTF5A2m/mv trap

2 is the TF ra-
dius. The integrand for the overlap integral which defines
free-bound Franck-Condon factor is the productsE(r )x1(r ),
where the free wave functionsE(r ) for E5m2D is deter-
mined from the repulsive potential and the bound wave fu
tion x1(r ) is determined from the attractive potential. Th
effective repulsive potential in Fig. 2 is shown using both t
TF approximation and the exact~numerically computed!
BEC ground state. The line atE5m2D in the figure crosses
this repulsive potential at the classical turning point for m
tion on this potential. IfE'm, this classical turning point, o
Condon point, is nearr 50. The Condon point varies from
large r to r 50 asE varies from 0 tom, and a real Condon
point no longer exists forE.m. The latter case defines
classically forbidden Franck-Condon factor, which drops
exponentially with increasingE, like an antistatic wing of a
pressure broadened transition. When the rf is tuned so
the final-state energyE is in the range 0,E,m, there is a
real Condon crossing point for the effective repulsive pot
tial. When the rf is tuned so that the final-state energyE
.m, there is no longer a real crossing point, and the integ
decays exponentially with increasingE.

The output coupling rate per particle is given by Eq.~11!
as

FIG. 2. Effective repulsive potential,V2(r )1U0uc1u2 for m
59.47\v trap and harmonic potentialV1(r ) versus radial distancer.
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Woc5
2p

\ U \V0

2
^Euvg&U2

5
hV0

2

4
z ^Euvg& z2. ~29!

The total BEC output coupling rate is given by

WBEC,out5NWoc ~30!

and is plotted in Fig. 3 versus asymptotic kinetic energyE
for the four values ofN that we have taken. Clearly th
output coupling rateWBEC,outfor each value ofN peaks at the
same value of energy asWoc; the energy of the peak as we
as the peak output coupling rate increase with increasingN.
Moreover, the width of the energy distribution becomes n
rower with increasingN.

The interpretation of Fig. 3 is as follows. As the rf fre
quency changes, the output coupling rate changes. The
ergy distribution of the output coupled particles would be ad
function at the kinetic energy determined by the rf frequen
v rf , i.e., the energy of the output particles would be co
pletely determined for a given rf frequency, were it not f
the fact that the output coupling rate is finite. The width
the kinetic energy distribution at a given kinetic energyE
(E5m2D) is related~but not equal! to the inverse of the
calculated output coupling rate at this energy. The width w
change with time@36#, because the nature of the BE
changes with time~if it is not replenished by continued
evaporative cooling!, much like the width of the fluorescenc
spectrum of a large molecule changes with time becaus
the relaxation of the molecule over times short compa
with the decay time.

In order to check the validity of using the TF approxim
tion in the calculation of the free-bound overlap integral,
compare in Fig. 4 the results of computing the integral us
TF and the numerically computed BEC ground-state w
function. At high energies the results using TF are very
curate. At very low energies, the TF results in somew
smaller values of the integral. This occurs because the e
continuum wave function is larger around the true turn
point than the TF, and the bound-state wave function
larger at this turning point than the turning point for the T

FIG. 3. Total BEC output coupling rate versus asymptotic
netic energy of the bosons for the four values ofN'3.6
3104, 1.83105, 7.33105, and 1.03107. We have arbitrarily
taken the coupling strength such thathV0

2/451 in Eq. ~29!.
r-

n-
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-

f

ll
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d
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e
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ct

is

~see Fig. 5!. In the intermediate energy regime, from abou
to 6 \v trap, the integral calculated using TF is somewh
larger than the results using the exact wave function beca
the TF wave function is larger at the classical turning po
on the effective repulsive potential.

The criterion for a cw atom laser is that the time for t
atoms to leak out into the output coupled state must be l
compared to the oscillation period in the trap, that is,

Woc!v trap. ~31!

VII. SUMMARY AND CONCLUSIONS

The theory of atom laser output coupling for cw or we
narrow-band rf fields and pulsed broadband rf fields is b
developed using time-independent and time-dependent t
ments, respectively~in analogy with the theory of photodis
sociation of molecules discussed in Sec. II!. We developed a
general framework in which to describe atom laser out
coupling of BECs, and showed how this theory reduced
the limit of cw rf fields and the limit of intense broadban

- FIG. 4. Bound-free Franck-Condon factor versus energy co
puted using the Thomas-Fermi approximation and the numeric
computed BEC ground-state wave function.

FIG. 5. Ground-state wave function versusr computed using the
Thomas-Fermi approximation and the numerically computed B
ground-state wave function.
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fields to much simpler formulations. We presented numer
results for the output coupling rate versus rf detuning a
number of atoms in the BEC for narrow-band weak rf field
We find that~a! the rate is largest forE'm ~i.e., largest for
zero detuning and decreases for both positive and nega
detuning!, ~b! the rate increases at a rate less than linear w
the number of particles,~c! the width of the energy distribu
tion becomes narrower with increasingN. The reasons for
these trends are that~i! for an energyE'm, the classical
turning point is nearr 50, so one expects good overlap of th
continuum wave function with the ground-state BEC wa
function, and for energies lower or higher thanE'm the
overlap integral decreases, and~ii ! the maximum of the free-
bound overlap integral~supremum over energy! decreases
with N and the width of the distribution of energies as det
mined by Woc becomes narrower. In the limit of\Dv rf
.DEv and\V@v trap, and forD50, the probability of find-
ing output coupled particles as a function of time is given
12PN,0(t)512 cos2N(Vt/2), where t is the time duration
for which the rf field is on. An analytic expression for th
probability can also be easily worked out in this limit fo
DÞ0 in terms of the generalized Rabi frequencyV8
5AD21V2. For weaker Rabi frequencies, the temporal b
havior is more complicated and must be calculated using
two-component Gross-Pitaevskii equation@9,21#. Stimula-
tion due to the population of states by the bosonic atom
explicitly included in the treatment, as is clearly evide
from the Fock-state description presented in Sec. III B.

For rf-induced transitions between bound levels of diff
ent hyperfine structure states, the nature of the formula
again depends on the linewidth of the rf field as compa
with the spacing between the mean-field bound-state lev
ic
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If the bandwidth is small compared with the spacing betwe
levels, the time dependence of the amplitude of individ
mean-field eigenstates due to the presence of the rf fiel
determined, whereas if the bandwidth is large compared w
the spacing between levels, one calculates the amplitude
the hyperfine levels without explicitly determining the pop
lation of the mean-field bound-state eigenstates.

The treatment here has been developed for ze
temperature BECs at the level of a Hartree mean-field
proximation. This treatment can be generalized to finite te
peratures where it is essential to include the above me
field contribution to BEC~even at zero temperatures the
will be a very small contribution from the above mean-fie
contribution in a more complete theory!. For the finite-
temperature case, a density-matrix generalization~including
the above mean-field contribution! of the theory presented
here can be readily developed.

Our treatment can also be easily generalized to Ram
output coupling schemes to couple states that differ by
or zero units of azimuthal quantum number and angular m
mentum quantum number, wherein pump and Stokes rf fie
induce Raman hyperfine transitions~the intermediate state o
the Raman process can be off-resonant!.
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