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Abstract
We study the dynamics of a two-level quantum system interacting with a single frequency
electromagnetic field and a stochastic magnetic field, with and without making the rotating wave
approximation (RWA). The transformation to the rotating frame does not commute with the
stochastic Hamiltonian if the stochastic field has nonvanishing components in the transverse
direction, hence, applying the RWA requires transformation of the stochastic terms in the
Hamiltonian. For Gaussian white noise, the master equation is derived from the stochastic
Schrödinger–Langevin equations, with and without the RWA. With the RWA, the master
equation for the density matrix has Lindblad terms with coefficients that are time-dependent (i.e.,
the master equation is time-local). An approximate analytic expression for the density matrix is
obtained with the RWA. For Ornstein–Uhlenbeck noise, as well as other types of colored noise,
in contradistinction to the Gaussian white noise case, the non-commutation of the RWA
transformation and the noise Hamiltonian can significantly affect the RWA dynamics when
ωτ ⪆ 1corr , where ω is the electromagnetic field frequency and τcorr is the stochastic magnetic
field correlation time.

Keywords: two-level quantum system, rotating wave approximation, stochastic dynamics,
Gaussian white noise, Ornstein–Uhlenbeck noise

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the basic quantum processes studied in physics is the
two-level system driven by an electromagnetic field. At least
six Nobel prizes were awarded for work on such processes:
Rabi, for the resonance method applied to molecules and
NMR, Bloch and Purcell for their development of new
methods for NMR, Townes, Basov, and Prokhorov for
masers, lasers and quantum optics, Kastler for optical
pumping, Ramsey for the separated oscillatory fields method
and its use in atom clocks, and Haroche and Wineland for
developing methods for observing individual quantum parti-
cles without destroying them. But quantum systems are never
isolated; they interact with their environment, and this gives
rise to perturbations that can strongly affect their behavior.
Such interaction affects all the phenomena enumerated above,
as well as other phenomena including dephasing in metals [1],
nuclear-spin-dependent ground-state dephasing in diamond

nitrogen-vacency centers [2], broadening and shift of atomic
clock transitions [3], and decoherence in quantum information
processes [4].

The dynamics of a quantum system coupled to an
environment (a bath) is often treated in terms of the reduced
density matrix of the system obtained by tracing out the bath
degrees of freedom in the state of the system plus bath [5].
Upon assuming that the initial density matrix is of a product
state form, making the Born–Markov approximation and the
rotating wave approximation (RWA) [5], the resulting master
equation for the reduced density matrix is of Lindblad form
[6]. An alternative treatment models the coupling of the
quantum system and the bath by introducing stochastic fields
that act on the system, where the stochastic fields are gener-
ated by a complex environment [7–10]. The statistical prop-
erties of the stochastic fields are determined by the properties
of the environment. The environment can sometimes be
modeled as a ensemble of approximately independent
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fluctuating fields in steady state (e.g., in thermal equilibrium).
In this approximation, the resultant stochastic field felt by the
system is a superposition of a large number of components.
Due to the central limit theorem [11], the stochastic fields can
be represented by Gaussian, stationary stochastic processes
which are completely specified by their first two moments.
Moreover, if the timescales of the bath are small compared to
those of the system, the stochastic processes can be
approximated to be Gaussian white noise. The averaged (over
stochastic realizations) quantities obtained for Gaussian white
noise are equivalent to the averages obtained using a Lindblad
master equation approach [7] (see section 4). The stochastic
process method used here is called the Schrödinger–Langevin
stochastic differential equation formalism (SLSDE) [7]. In
principle, the bath could be affected by the system (back-
action). This back-action would modify the properties of the
noise felt by the system and effectively appear as a self-
interaction mediated by the environment. However, if the
perturbation caused to the environment by the quantum sys-
tem is weak, back-action can be neglected [7, 8]. The neglect
of back-action is similar to one of the approximations (the
Born approximation) made in the Born–Markov approxima-
tion of the master equation approach. Neglect of back-action
is called, in the context of the SLSDE formalism, the external
noise approximation [7].

Let us explicitly consider a two-level system, e.g., a spin
1/2 particle. The system interacts with a constant magnetic
field, whose direction can be taken, without loss of generality,
to be along the z axis, an electromagnetic field with frequency
ω, and a stochastic magnetic field, which can be viewed as
being due to interaction with a bath of other particles having
magnetic dipole moments. The deterministic part of the
Hamiltonian for the system can be written as1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

δ Ω ω

Ω ω δ
=

−
H t

t

t
( ) 2

sin

sin
2

, (1)

where the energy difference of the two-level system is given
by δ μ= − g z, where z is the static magnetic field, and the
Rabi frequency Ω is proportional to the electromagnetic field
strength that oscillates at frequency ω. Denoting the stochastic
magnetic field as tB ( )st , the stochastic Hamiltonian takes the
form

σμ= −H t
g

tB( )
2

( ) · , (2)st st

where σ σ σ σ= ( , , )x y z is the vector of Pauli spin matrices.
The average of tB( ) over the stochastic fluctuations is taken to
vanish, and the field correlation function depends upon the
type of noise [7],

= ′ = − ′ =t B t B t k t t i j x y zB ( ) 0, ( ) ( ) ( ), , , , , (3)i j ijst ,st ,st

where …( ) denotes the stochastic average, and − ′k t t( )ij is

the stochastic field correlation function. The full Hamiltonian
for the two-level system is = +H t H t H t˜ ( ) ( ) ( )st . There is a
considerable literature on the use of the RWA in such pro-
blems [9, 12–25], and we shall explore the stochastic
dynamics with and without making the RWA.

Specifically, here we explore the stochastic approach,
and, for Gaussian white noise, the master equation
approach, to the problem. We explicitly consider white
Gaussian noise (Wiener processes) and colored Gaussian
noise (Ornstein–Uhlenbeck processes). The outline of the
paper is as follows. In section 2, in order to set out the
notation used in this paper and to compare with the sto-
chastic dynamics in the coming sections, we present results
for the dynamics of the two-level system in an oscillating
field without any stochasticity present, both without and
with making the RWA. We discuss the stochastic dynamics
in section 3, first treating dephasing due to white noise in
the transverse magnetic field (bz) in section 3.1, then iso-
tropic white noise in section 3.2. In section 4 we present the
master (Liouville–von Neumann) equation results for
Gaussian white noise. We find that the RWA transformation
to the rotating frame does not commute with the stochastic
Hamiltonian when the noise has components along all
coordinate directions. This has the potential for affecting
the results obtained using the RWA in both stochastic
dynamics and master equation dynamics, but we find that
for Gaussian white noise, the effect is negligible. We find an
analytic solution to the density matrix dynamics for Gaus-
sian white noise. Section 5 considers Ornstein–Uhlenbeck
noise, and for this case isotropic noise of this kind, the non-
commutation of the RWA transformation with the sto-
chastic Hamiltonian need not be negligible. Finally, a
summary and conclusion is presented in section 6. This
section also contains an explicit example of a rather well-
studied physical system, nitrogen-vacancy (NV) centers in
diamond driven by an electromagnetic field, in which the
field induces transitions between levels that are subject to a
noisy environment. The reader desiring motivation for the
model used here prior to learning the details of the model is
encouraged to first read the last paragraph of section 6.

2. Dynamics in an oscillating field and the RWA

The time-dependent Schrödinger equation for our two-level

system is, ψ ψ= H ti ˙ ˜ ( ) , where
⎛
⎝⎜

⎞
⎠⎟ψ

ψ
ψ

=t
t

t
( )

( )

( )
b

a
is the two-

component solution and H t˜ ( ) is the time-dependent Hamil-
tonian given by the sum of (1) and (2). In this section, for the
sake of comparison with the stochastic dynamics to be pre-
sented in sections 3 and 5, and the master equation results in
section 4, we discuss the treatment of the problem without a
stochastic Hamiltonian, both without and with making the
RWA (i.e., transforming to the rotating frame wherein the
Hamiltonian RWA is time-independent). The time-dependent
Schrödinger equation will be solved with the initial condition

1 The Hamiltonian in equation (1) is often termed semiclassical because the
electromagnetic field is treated classically, rather than using a second-
quantized radiation field.
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⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ψ

ψ
ψ

≡ =(0)
(0)

(0)
1
0

b

a
at time t = 0. The probabilities for

being in states b and a at time t are given by ψ= ∣ ∣P t t( ) ( )b b
2

and ψ= ∣ ∣P t t( ) ( )a a
2. The inset in figures 1(c) and (d) show

the calculated probability ψ= ∣ ∣P t t( ) ( )b b
2 versus time for the

on-resonance case, δ ω = 1, and Rabi frequency Ω ω = 0.2,
without and with making the RWA. For any detuning δ, the
probabilities oscillate (Rabi-flop) with generalized Rabi fre-

quency Ω Ω Δ= +g
2 2 , where Δ ω δ= − is the detuning

from resonance. Moreover, without making the RWA, there is
a fast oscillation at frequency ω δ+ , which is clearly evident,
and there is also a Bloch–Siegert shift of the resonance fre-
quency by δω Ω ω= (4 )BS

2 [26]. The insets show that, for
the on-resonance case, Δ = 0, aside from the additional
oscillations due to the high frequency components and the
small Bloch–Siegert shift (which is barely visible here, since
ω = 0.01BS ), the nature of the RWA dynamics is rather
similar to that obtained without making the RWA.

If δ ω≈ , one often makes the RWA, wherein one
transforms to a rotating frame wherein the Hamiltonian, after
neglecting a quickly oscillating component, is approximately
time-independent. Letting the transformation to the rotating

frame,  t( ), be such that [27]

⎛
⎝⎜

⎞
⎠⎟ ψ φ= =

δ

δ

−

−
t t t t( ) ( ) ( ), ( ) e 0

0 e
, (4)

t

t

i

i

b

a

taking δ δ= − 2a and δ ω δ= +b a, and noting that

⎡⎣ ⎤⎦   φ φ∂
∂

= − t

t
t t t t ti

( )
( ) ( ) i ( ) ˙ ( ) ( ), (5)† †

and dropping quickly oscillatory terms, yields the following
Schrödinger equation for the spinor φ t( ):

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛
⎝

⎞
⎠

φ
φ

Δ Ω

Ω
φ
φ=

−

−t
i

d

d

i
2

i
2

0
. (6)

b

a

b

a

Applying a further transformation, φ φ→ −ia a, the full RWA
transformation becomes

⎛
⎝⎜

⎞
⎠⎟ =

−
δ ω−

t( ) e e 0
0 i

. (7)t ti 2 i

This last transformation turns the complex Hermitian time-
independent Hamiltonian matrix on the rhs of (6) into a real
symmetric time-independent Hamiltonian, and the

Figure 1. Dephasing of on-resonance transitions due to a stochastic field bz(t). (a) Hundred stochastic realizations of the probability
ψ= ∣ ∣P t t( ) ( )b b

2 versus time for the on-resonance case, for δ = 1.0, ω = 1.0 and Ω = 0.2 in the presence of a stochastic magnetic field
along the z direction with volatility =w 0.10 . (b) 100 stochastic realizations of the rotating wave approximation for the probability Pb(t)
versus time for the on-resonance case, for Δ = 0, ω = 1.0 and Ω = 0.2 in the presence of a stochastic magnetic field along the z direction
with volatility =w 0.10 . (c) Average probability ψ ψ=P t t t( ) ( ) ( )b b b

* and the average plus and minus standard deviation of the probability
versus time for δ = 1.0, ω = 1.0 and Ω = 0.2 and a stochastic field in the z direction with volatility =w 0.10 . (d) Average rotating wave
approximation probability P t( )b and the average plus and minus standard deviation of the probability versus time for Δ = 0, ω = 1.0 and
Ω = 0.2 and a stochastic field in the z direction with volatility =w 0.10 . For comparison, the insets in (c) and (d) show the results
without any noise.
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Schrödinger equation becomes [27],

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛
⎝

⎞
⎠

φ
φ

Δ Ω

Ω
φ
φ=

−

t
i

d

d
2

2
0

. (8)
b

a

b

a

Hence, the (constant) RWA Hamiltonian matrix is

⎜ ⎟
⎛
⎝

⎞
⎠

Δ Ω
Ω

≡ −H 2
2 0RWA . The criteria for the validity of the

RWA are Δ ω∣ ∣ ≪ and Ω ω< .
In the remainder of this paper, we use dimensionless

quantities; we set = 1, take time to be measured in units of
ω1 , and the frequencies δ and Ω to be in units of ω (i.e., we

take ω = 1). The dimensionless system Hamiltonian is given
by

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟


δ Ω

Ω δ
=

−
t

t

t
( ) 2

sin

sin
2

, (9)

the dimensionless stochastic Hamiltonian is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ σ= =

−
+ −t t

b t b t b t

b t b t b t
b( ) ( ) ·

( ) ( ) i ( )

( ) i ( ) ( )
, (10)

z x y

x y z
st

where tb( ) is the dimensionless stochastic magnetic field, and
the full dimensionless Hamiltonian is   = +t t t˜ ( ) ( ) ( )st .

The RWA Hamiltonian is ⎜ ⎟
⎛
⎝

⎞
⎠ Δ Ω

Ω
= − 2

2 0RWA , where the

dimensionless detuning is Δ ω δ= − (i.e., Δ δ ω= −1 ),
and the dimensionless Rabi frequency is Ω (i.e., Ω ω). An
important parameter regarding the stochastic magnetic field is
the noise correlation time τcorr, which is determined by the
nature of the noise. For Gaussian white noise, τcorr is infini-
tesimal, but for an OU process (colored Gaussian noise) τcorr

is an important parameter that characterizes the noise. We
shall see in sections 3.2 and that an important dimensionless
parameter that characterizes the response of the system to the
noise is ωτcorr (in dimensionless time units, τcorr).

3. Stochastic dynamics

There are a number of ways of modeling stochastic processes,
including a master equation method [5], a Monte Carlo wave
function method [28], and a stochastic differential equations
method [7, 8, 29, 30]. In this section, we use stochastic dif-
ferential equations.

If the characteristic timescale of the fluctuations is much
shorter than the timescale of free evolution of the system, the
noise correlations can be well approximated by a Dirac δ
function to obtain the Gaussian white noise limit wherein the
dimensionless correlation functions κ τ( )ij (related to the
dimensional correlation functions appearing in equation (3))
are proportional to Dirac δ functions. If the noise in the

different components of the magnetic field is uncorrelated

κ δ δ′ = − ′ = − ′b t b t t t w t t( ) ( ) ( ) ( ). (11)i j ij i ij0,
2

The quantity w i0, is the dimensionless volatility of the ith
component of the dimensionless stochastic field tb( ).

A Wiener process w(t) is the integral over time of white
noise ξ t( ), i.e., ξ =t w t t( ) d ( ) d , with ξ =t( ) 0 and
ξ ξ δ′ = − ′t t w t t( ) ( ) ( )0

2 (compare with equation (11)). Thus,
the stochastic magnetic field components are taken to be the
time-derivative of a Wiener process. The SLSDE for a
quantum system coupled to a Wiener stochastic process w(t)
via operator  is given by [7],

   ψ ψ ξ ψ ψ= − + −w t
w

˙ i ( )
2

. (12)0
0
2

†

The w0
2 term in equation (12) insures unitarity if  is a

Hermitian operator [7]. Equation (12) can be easily general-
ized to include sets of operators i, stochastic processes wi(t),
and volatilities w i0, , to obtain the general SLSDE

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟   ∑ψ ψ ξ ψ ψ= − + −w t

w
˙ i ( )

2
. (13)

i

i i i
i

i i0,
0,
2

†

Equation (12) is equivalent to a Markovian quantum master
equation with a Lindblad operator  , and the more general
equation (13) is equivalent to the Markovian quantum master
equation



     

∑ρ ρ

ρ ρ ρ

= − +

× − −( )

t w

t t t

˙ i[ , ( )]
1

2

2 ( ) ( ) ( ) , (14)

j

j

j j j j j j

0,
2

† † †

with the set of Lindblad operators i [5, 7].
For example, for the dephasing case to be studied in

section 3.1, the Lindblad operator is taken to be  σ= z, and
the wave function ψ is a two component spinor. In stochastic
process notation [7, 8, 29, 30], equation (12), takes the form

 ψ ψ ψ

ψ ψ

= − +

− +

( )t t t

w
t t w t w a

d ( ) {[ i ( ) ( )

2
( )] d ( ) d }, (15 )

b bb b ba a

b b
0
2

0

 ψ ψ ψ

ψ ψ

= − +

− −

( )t t t

w
t t w t w b

d ( ) {[ i ( ) ( )

2
( )] d ( ) d }. (15 )

a ab b aa a

a a
0
2

0

For any specific realization of the stochastic process, these
equations are solved to yield the two component spinor
⎛
⎝⎜

⎞
⎠⎟

ψ
ψ

t

t

( )

( )
b

a
(which is itself a stochastic variable). The (survival)

probability to be in state b at time t is ψ= ∣ ∣P t t( ) ( )b
2. The

distinction, as compared with the deterministic case ( =w 00 ),
is that now P(t) is a random function with distribution
 P t[ ( )]. Equations (15a) and (15b) are easily generalizable
to white noise in all three components of the magnetic field;
the Lindblad operators appearing in (13) are then  σ=i i and
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w i0, are the volatilities for bi(t). For the isotropic case (treated
in section 3.2), the numerical values of w i0, are equal.

3.1. Dephasing due to transverse white noise

Dephasing of a system occurs due to interaction between the
system and its environment which scrambles the phases of the
wave function of the system without directly affecting prob-
abilities. One of the methods for treating dephasing of a
quantum system is to model the interaction with the environ-
ment in terms of a time-dependent random noise. Such an
approach enables the calculation of not only the averaged sur-
vival probability, P t( ), but also its standard deviation,

Δ = −( )P t P t P t( ) ( ) ( ( ))2 2
1 2

, and its statistical distribution

function  P t[ ( )]. When the fluctuating magnetic field has a
non-vanishing component only along z, equation (2) reduces to

 ξ σ=t t( ) ( ) , (16)zst

i.e., ξ=t tb z( ) ( ) ˆ , where ξ t( ) can be taken as white noise,
which has an infinitesimal correlation time, if the correlation
time of the bath, τcorr, is very fast in comparison to the time-
scales of the spin system, so, to a good approximation

ξ ξ ξ δ= ′ = − ′t t t w t t( ) 0, ( ) ( ) ( ). (17)0
2

As discussed earlier in connenction with equation (11), the
white noise ξ t( ) can be written as the time derivative of a
Wiener process w(t), ξ =t w t t( ) d ( ) d , or more formally, the
Wiener process w(t) is the integral of the white noise. The
stochastic Hamiltonian in equation (16) gives rise to dephasing
of the wave function of the two-level system. In the case of
dephasing due to collisions with particles, each collision can
have a random duration and a random strength, and in the case
of interactions with an environment, the many degrees of
freedom of the environment can randomly affect the phase of
the wave functions ψ t( )a and ψ t( )b . This results in a time-
dependent uncertainty δφ t( )j in the phase of the wave function
component ψ t( )j . At a time τ=t for which δφ τ π=( ) 2j ,
interference is completely lost. The volatility (the stochastic
field strength) w0 appearing in equation (17) is inversely pro-
portional to the correlation time τ τ≡ϕ corr of the bath. Incor-
poration of dephasing in two-level system dynamics has been
extensively studied [33–37].

Our stochastic calculations were carried out using the
Mathematica 9.0 built-in command ItoProcess [31]. Figure 1
shows the results for a stochastic magnetic field in the z
direction that corresponds to white noise with volatility

=w 0.10 . Specifically, figures 1(a) and (b) show 100 sto-
chastic realizations of the probability ψ= ∣ ∣P t t( ) ( )b b

2 versus
time for the on-resonance case, δ = 1.0, ω = 1.0 and
Ω = 0.2, computed without and with making the RWA.
Figures 1(c) and (d) show the mean probabilities and the
standard deviations for these cases. For very large time, the
oscillations in the probabilities die out and the probabilities go
to 1/2. Figure 2(a) shows the histogram of the probability

Pb(T) distribution,  P T[ ( )]b , at the final computed time,
T = 60, for the case shown in figure 1(a).

3.2. Decoherence due to isotropic white noise

Figure 3(a) shows the average probability ψ ψ=P t t t( ) ( ) ( )b b b
* ,

and the average plus and minus the standard deviation of the
probability calculated using equation (13) in the form

⎛
⎝⎜

⎞
⎠⎟ ∑ψ ψ ξ σ ψ= − − +

w
w t1˙ i

3

2
( ) , (18)

i

i i
0
2

0

where the white noise ξ t( )i satisfy ξ =t( ) 0i and
ξ ξ δ δ′ = − ′t t t t( ) ( ) ( )i j ij , with the volatilities ≡ =w w 0.1i,0 0

for =i 1, 2, 3. Figure 2(b) shows the histogram of the
probability Pb(t) at the final computed time, t = 60, for the
case shown in figure 3(a).

The RWA (i.e., the transformation to the rotating frame)
for the Schrödinger equation in equation (20) (or (13)) must
be carried out with care because the unitary transformation
matrix in equation (7) does not commute with the σx and σy

stochastic terms in (18). The transformation of the Gaussian
white noise Hamiltonian in (18) gives

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

  ξ σ

ξ ξ ξ

ξ ξ ξ

= =

×
−

− + −

ω

ω

− ( )
( )

[ ]t t w t w˘ ( ) ( ) · ( )

i e i

i e i
, (19)

z
t

x y

t
x y z

st
†

0 0

i

i

where  t( ) is given in equation (7), and the SLSDE RWA
for Gaussian white noise becomes

⎛
⎝⎜

⎞
⎠⎟ ψ ψ= − − +

w
t1˙ i

3

2
˘ ( ) . (20)RWA

0
2

st

figure 3(b) shows the average probability P t( )b , and the
average plus/minus the standard deviation of the probability,
calculated using equation (20). Figure 3(c) shows the results

of using  ψ ψ= − +( )t1i ˙ ( )
w

RWA
3

2 st
0
2

, which neglects

the fact that the RWA transformation and the transverse
stochastic Hamiltonian do not commute. There is little dif-
ference between the results in figures 3(b) and (c), which is
not surprising, given that the time dependence of the har-
monic function ωe ti , i.e., ω−1, is slow compared to the cor-
relation time τcorr of white noise, which is effectively zero
(i.e., infinitesimal). A significant difference will occur only if
ωτ ⪆ 1corr . Only for noise with a correlation time τcorr com-
parable to ω−1 or larger are large differences are expected. In
section 5 we discuss the case of an Ornstein–Uhlenbeck
process with mean reversion rates comparable to the fre-
quency ω; for such cases, we expect a substantial difference
between the results of taking the non-commutation into
account or not. Figures 4(a)–(c) show the off-resonance case,
δ = 1.2, ω = 1.0, Ω = 0.2. Again, here there is very little
difference between the results in figures 4(b) and (c), for the
same reasons just discussed.
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4. Master (Liouville–von Neumann) equation results

As already mentioned, white noise gives average results that
are identical to those obtained with a Markovian Liouville–
von Neumann density matrix equation having Lindblad terms.
For the isotropic white noise case in equation (20) the cor-
responding density matrix equation is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∑ρ ρ ρ σ ρ σ= − + −t t w t t˙ i[ ( ), ( )] 3 ( ) ( ) . (21)

i

i i0
2

Figure 5 shows the results of such density matrix calculations.

Figure 5(a) is for the on-resonance dephasing case with
Lindblad operator σz this case of white noise only in the z
component of the magnetic field, see equation (16), gives the
master equation, ρ ρ= − t t˙ i[ ( ), ( )] + ρ σ ρ σ−w t t( ( ) ( ) )z z0

2

], figure 5(b) is for the on-resonance isotropic white noise
case, and figure 5(c) is for the off-resonance case with
Δ = 1.2, ω = 1.0. In particular, ρ t( )bb using the density
matrix (master equation) treatment is identical, to within
numerical accuracy, to the average probabilities P t( )b com-
puted with the stochastic differential equation approach.
However, the Liouville–von Neumann density matrix
approach cannot easily determine the distribution  P t[ ( )]b of

Figure 2. (a) Histogram with 100 paths (realizations) of the probability Pb(t) in the presence of a stochastic magnetic field along the z
direction at the final computed time, t = 60 shown in figures 1(a) and (c). (b) Histogram with 100 paths (realizations) of the probability Pb(t)
in the presence of an isotropic stochastic magnetic field at the final computed time, t = 60 to be shown in figure 3(a).

Figure 3. Decoherence and dephasing of on-resonance transitions with isotropic white noise. (a) Average probability ψ ψ=P t t t( ) ( ) ( )b b b
* and

the standard deviation of the probability versus time for δ = 1.0, ω = 1.0, Ω = 0.2 and volatilities = = =w w w 0.10,1 0,2 0,3 . (b) Same as (a)
(i.e., Δ = 0), except calculated using the RWA. (c) Same as (b), except that the non-commutativity of the RWA transformation and the
transverse stochastic Hamiltonian not properly accounted for.

Figure 4. Decoherence and dephasing of off-resonance transitions. (a) Average probability ψ ψ=P t t t( ) ( ) ( )b b b
* versus time for δ = 1.2,

ω = 1.0, Ω = 0.2 and volatilities = = =w w w 0.10,1 0,2 0,3 . (b) Same as (a) (i.e., Δ = 0.2), except calculated using the RWA. (c) Same as (b),
except that the non-commutativity of the RWA transformation and the transverse stochastic Hamiltonian terms is not properly accounted for.
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the probability Pb(t) (to do so would require calculating P t( )b
m

for all poowers m), which can be directly obtained using the
stochastic equation approach.

Now, consider the RWA. The analytic solution to
equation (21) (isotropic Gaussian white noise), using the
RWA Hamiltonian  t( )RWA instead of  t( ), is given by

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦ ⎫
⎬⎪
⎭⎪

⎡⎣ ⎤⎦

⎧
⎨⎪
⎩⎪

⎡⎣ ⎤⎦ ⎫
⎬⎪
⎭⎪

ρ
Δ Ω Ω

Ω

ρ
Ω Δ Δ Ω Ω Ω

Ω

ρ ρ

ρ
Δ Ω Ω

Ω

= +
+

=
− +

=

= −
+

−

−

−

( )

( ) ( )

( )

t
t

t
t t

t t

t
t

( )
1

2
1

e cos

4
,

( )
e cos i sin

4
,

( ) ( ),

( )
1

2
1

e cos

4
, (22)

bb

w t
g

g

ba

w t
g g g

g

ab ba

aa

w t
g

g

4 2 2

2

4

2

*

4 2 2

2

0

0

0

where Ω Ω Δ≡ +g
2 2 . Figure 6(a) plots the probabilities

ρ t( )bb and ρ t( )aa and the purity ρ tTr [ ( )]2 versus time for the
on-resonance case. As → ∞t , the purity goes to 1/2 and the

density matrix decays to the democratic state ⎜ ⎟
⎛
⎝

⎞
⎠

1 0
0 1

1

2
.

Figure 6(b) plots the coherence ρ t( )ba versus time; it has only
an imaginary component and it decays to zero as → ∞t . The

decay rate of the populations and the coherence is w4 0, as is
evident from the expressions in equation (22). Properly
accounting for the non-commutativity of the RWA transfor-
mation and the stochastic Hamiltonian, i.e., using the sto-
chastic Hamiltonian in equation (19), does not significantly
affect the numerical results for white Gaussian noise. The full
RWA probabilities, including non-commutativity effects, are
indistinguishable by eye from the results shown in figure 6.
The full RWA coherence ρ tIm [ ( )]ba is also indistinguishable
by eye, and the ρ tRe [ ( )]ba is more than an order of magni-
tude smaller than the imaginary part.

5. Ornstein–Uhlenbeck process

Many kinds of stochastic processes have been studied. In
order to see significant effects due to the non-commutativity
of the RWA transformation and stochastic part of the total
Hamiltonian  = +H t t t˜ ( ) ( ) ( )st , we need a stochastic
process with a correlation time τcorr comparable to or greater
than the timescale of the driven two level system ω−1. A well-
known finite-correlation-time stochastic process is the Orn-
stein–Uhlenbeck process, which is an example of Gaussian
colored noise, which is a generalization of Brownian motion
[32]. The mean and the autocorrelation function of an

Figure 5. Master (Liouville–von Neumann density matrix) equation calculations of dephasing and decoherence. (a) Dephasing of the
probability ρ t( )bb versus time for the on-resonance case, δ = 1.0, ω = 1.0, Ω = 0.2, and white noise in the z component of the magnetic field
with volatility =w 0.10 . (b) Decoherence and dephasing of the probability ρ t( )bb versus time for δ = 1.0, ω = 1.0, Ω = 0.2, and isotropic
white noise with volatilities = = =w w w 0.10,1 0,2 0,3 . (c) Same as for (b), except for the off-resonance case with δ = 1.2, ω = 1.0.

Figure 6. Analytic results obtained using equation (22) for the density matrix for isotropic white noise in the on-resonance case with δ = 1.0,
ω = 1.0, Ω = 0.2, and ≡ = = =w w w w 0.10 0,1 0,2 0,3 . (a) Density matrix elements ρ t( )bb and ρ t( )aa , and the purity ρ tTr [ ( )]2 (dashed green
curve) versus time. Compare with the non-RWA results in figure 5(b). (b) Off-diagonal density matrix ρ t( )ba versus time. The real part of

ρ t( )ba vanishes for the on-resonance case.
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Ornstein–Uhlenbeck process are

⎡⎣ ⎤⎦

 

 

μ

δ
ϑ

= + −

′ = −

ϑ ϑ

ϑ ϑ

− −

− + ′ ′

( )t

t t
w

( ) e 1 e ,

( ) ( )
2

e e 1 . (23)( ) ( )

i i
t

i
t

i j ij
i

i

t t t t

0,

0,
2

min ,

i i

i i

Here ϑi is the mean reversion rate of the Ornstein–Uhlenbeck
process  t( )i , which is the inverse of the noise correlation
time, τ ϑ= −

i icorr,
1, w i0, is its volatility, and μi is the mean of

the process, which we take to vanish, μ = 0i ; we also take
 = 0i0, . The stochastic differential equations that we solve
are

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ ∑ψ ψ σ ψ= − +t t t t ad ( ) i ( ) ( ) d , (24 )

i

i i

⎡⎣ ⎤⎦ ϑ μ= − +t t t w w t bd ( ) ( ) d d ( ). (24 )i i i i i i0,

For determining the effects of the non-commutativity of the
RWA transformation and stochastic terms in the total
Hamiltonian, it is sufficient to use only the term i = x in the
sum in equation (24a). Doing so simplifies the convergence of
the calculation relative to using isotropic Ornstein–Uhlenbeck
noise.

Figure 7 shows the calculated average probability P t( )b

versus time and the average plus and minus the standard
deviation of the probability calculated using equation (24) for
Ornstein–Uhlenbeck noise in the x component of the mag-
netic field for the on-resonance case, δ = 1.0, ω = 1.0,
Ω = 0.2. Figure 7(b) is calculated using the RWA, and for
comparison purposes only, (c) shows the results using a RWA
but ignoring the non-commutativity of the RWA transfor-
mation and the transverse stochastic Hamiltonian term, i.e.,
ignoring the factors ω±e ti in the off-diagonal elements of the
Hamiltonian

⎛

⎝
⎜⎜

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎞

⎠
⎟⎟

   Δ Ω
Ω

= + = −

+
−

− + −

ω

ω

−

( )t t

b t b t b t

b t b t b t

˜ ( ) ( )
0

( ) i e ( ) i ( )

i e ( ) i ( ) ( )
. (25)

z
t

x y

t
x y z

RWA RWA st,RWA

i

i

The oscillating factors ω±e ti in the off-diagonal terms can be

ignored if ωτ ≪ 1corr , but not otherwise. In figure 7 we used
ωτ = 1corr , so we expect that the non-commutativity cannot be
ignored, and we took noise only in the x-component of the
magnetic field. The calculations in figure 7 were hard to
converge with respect to the time-step used, hence we only
continued them out to a final time of t = 20. Note that the
standard deviation in figure 7(c) is significantly reduced
relative to (a) and (b), and the width becomes very close to
zero at t = 15.5 where the average probability goes to zero,
unlike the results in (a) and (b). Clearly, the results of
ignoring the non-commutativity of the RWA transformation
and the transverse stochastic Hamiltonian are very different
from the RWA taking the non-commutativity into account.
The minimum of the probability in (c) is shifted to somewhat
smaller time and is much closer to zero probability than in (b);
moreover the standard deviation in (c) is much smaller than in
(b). We also expect a difference between taking and not
taking the non-commutativity into account in a master
equation approach. The master equation for OU noise could
in principle be determined using cumulant generating func-
tional methods and requires calculation of time-ordered
exponential functions [38] but this is a difficult task. Figure 8
shows P t( )b for isotropic Ornstein–Uhlenbeck noise for the
off-resonance case, Δ = 0.2. Here, the differences between
(b) and (c) are small. No difference between (b) and (c) results
due to the z-component of the noise field, whose noise
Hamiltonian commutes with the RWA transformation;
moreover, there is some compensation which takes place
between the x and y components.

6. Summary and conclusions

Much of our experience with quantum dynamics comes from
applying it to two-level systems driven by an electromagnetic
field. But such systems are never truly isolated, and their
interaction with their environment affect their mysterious
quantum properties, i.e., their quantum coherence. Such
interaction is at the heart of the fundamental limitations of
quantum metrology and quantum information processing.
Using the SLSDE formalism, we studied the dynamics of a
two-level quantum system driven by single frequency

Figure 7. Ornstein–Uhlenbeck noise and on-resonance radiation, highlighting the effects of the non-commutativity of the RWA
transformation and the transverse stochastic Hamiltonian. (a) Probability P t( )b versus time for the on-resonance case, δ = 1.0, ω = 1.0 (so
Δ = 0), Ω = 0.2, and Ornstein–Uhlenbeck noise in the x component of the magnetic field, with volatility =w 0.1x0, and mean reversion rate
ϑ = 1x (so ωτ = 1corr ). (b) Same as (a) except calculated using the RWA. (c) Same as (b), except that the non-commutativity of the RWA
transformation and the transverse stochastic Hamiltonian term is not properly accounted for.
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electromagnetic field, with and without making the RWA. If
the transformation to the rotating frame does not commute
with the stochastic Hamiltonian, i.e., if the stochastic field has
nonvanishing components in the transverse direction, the
RWA modifies the stochastic terms in the Hamiltonian. The
decay terms in a master equation (i.e., the Liouville–von
Neumann density matrix equation) will also be affected. We
found that for Gaussian white noise, the master equation for
the density matrix is easily derived from the SLSE, with and
without the RWA. For the RWA, both the SSLE and the
derived master equation have Lindblad terms with coeffi-
cients that are time-dependent (i.e., the master equation is
time-local [9]) when the non-commutation of the RWA
transformation and the noise Hamiltonian is properly
accounted for. But since ωτcorr effectively vanishes for white
Gaussian noise, it is not necessary to take the non-commu-
tation into account, independent of the strength of the noise
(w0), and we obtain an analytic expression for the density
matrix of the system, equation (22), which fully describes the
dynamics of the two-level system in the presence of the noise.
On the other hand, for the non-Markovian Ornstein–Uhlen-
beck noise case, the RWA dynamics must be calculated
taking the non-commutation of the RWA transformation and
the noise Hamiltonian into account when ωτ ⪆ 1corr .

Decoherence and dephasing of two-level systems can be
probed by measuring the population decay (T1) and the
transverse relaxation time (T2) in magnetic resonance studies
[39, 40]. One well-studied physical system in which such
studies have been carried out is the negatively charged NV
color center in diamond. An NV center consists of a sub-
stitutional nitrogen atom adjacent to a missing carbon atom
within the diamond crystal lattice [41]. The negatively
charged NV center has a discrete electronic energy level
structure and a ground electronic state of symmetry A3

2,
where this state designation refers to an irreducible repre-
sentation of the C3v group. The three electronic magnetic sub-
levels of the triplet ground state are ∣ 〉S M, , where S = 1 and

= ±M 0, 1, with the z axis (quantization axis) taken along the
NV axis. The three S = 1 ground state levels are split by a
spin–spin (crystal field) interaction that raises the energy of
the ∣ ± 〉1, 1 states with respect to the ∣ 〉1, 0 state by  = 2.87
GHz. The NV system can behave like a two-level system if
one of the three states is not allowed to be populated. The

main sources of decoherence are from the paramagnetic
impurity spin bath, which dominates at high nitrogen con-
centration, and interactions with the spin 1/2 C13 nuclei
[42, 43]. Population decay, T1, is dominated by Raman-type
interactions with lattice phonons at high temperature (room
temperature and above), Orbach-type interaction with local
phonons at lower temperatures [39, 44, 45], and at tempera-
tures below about 100 K, density-dependent cross-relaxation
effects between NV centers and between NVs and other
impurities. At these low temperatures, the resulting T1 can be
dramatically tuned using an external magnetic field [39]. For
dilute samples, the contribution of NV–NV dipolar interac-
tions to the magnetic resonance broadening can be approxi-
mated by assuming that each NV center couples to
neighboring NV centers, to substitutional nitrogen (P1) cen-
ters, which have a spin of 1/2, and with C13 nuclei, which
have a nuclear spin of 1/2 and a natural abundance of about
1%. Dipolar coupling with other NV centers leads to a spin-
relaxation contribution on the order of γ μ≈ g n( )s BNV

2
NV,

where nNV is the NV concentration [43, 46]. For
(NV) = 15 ppm, this corresponds to γ ≈ 10NV

6 s γ≈−
C

1 ,

where γC is the spin relaxation rate to to the C13 nuclei. Since

the dynamics of the C13 nuclear spin is slow, it can be
modeled, to good approximation, as quasi-static Guassian
noise. Since the spin dynamics of the NV centers and PI
centers in diamond are fast, the contribution of NV–NV and
NV–P1 interactions can be modeled, to good approximation,
as Gaussian white noise. As demonstrated in [40], CW hole-
burning and lock-in detection can be used to eliminate the
linewidth contribution from slowly fluctuating C13 nuclei
while rapidly fluctuating magnetic fields from nearby sub-
stitutional nitrogen (P1) centers and NV centers continue to
contribute to a reduced linewidth. Hence, by adjusting the
external magnetic field strength and the concentrations of NV
centers, P1 centers and C13 , the volatilities w0, the stochastic
magnetic field correlation times τcorr and the detuning from
resonance Δ can be modified. If only two of the three triplet
ground state levels ∣ 〉S M, are populated, the methods devel-
oped in this manuscript can be applied directly; if all three
levels are populated, it is straightforward to generalize the
spin 1/2 treatment here to S = 1. In either case, the conclu-
sions we obtained are quite general and are expected to apply

Figure 8. Isotropic Ornstein–Uhlenbeck noise and off-resonance radiation, Δ = 0.2. (a) Probability P t( )b versus time for the off-resonance
case, δ = 1.2, ω = 1.0 (so Δ = 0.02), Ω = 0.2, and isotropic Ornstein–Uhlenbeck noise in the magnetic field, with volatilities

= = =w w w 0.1x y z0, 0, 0, and mean reversion rate ϑ = 1x (so ωτ = 1corr ). (b) Same as (a) except calculated using the RWA. (c) Same as (b),

except that the non-commutativity of the RWA transformation and the transverse stochastic Hamiltonian term is not properly accounted for.
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to the NV diamond system. One would, of course need to
know the correlation times and the strength of the noises
affecting the NV centers. Specifically, if the correlation time
τcorr of the noise (of the bath coupled to the system) is of order
of the frequency of the electromagnetic field ω that couples
the levels, the non-commutativity of the RWA transformation
and the noise Hamiltonian must be taken into account, even
when the criteria for validity of the RWA for the system are
satisfied. For diamond NV centers, the resonant frequency ω
for transitions from M = 0 to = ±M 1 is of order GHz (with
no external magnetic field, it is 2.87 GHz), so for ωτ ≈ 1corr ,
τcorr must be of order milliseconds. When ωτ ≪ 1corr , the non-
commutativity need not be taken into account.
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