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The dynamics of an adiabatic sweep through a Feshbach resonance in a
degenerate quantum gas of fermionic atoms to produce a degenerate quantum gas
of diatomic molecules are studied using many-body and mean-field methods. We
demonstrate that the dependence of the remaining fraction of atoms G on sweep
rate � varies from exponential Landau–Zener behaviour for a single pair of
particles, to a power-law dependence for a large number of atoms, N. Two
different power-law behaviours are obtained depending on the initial molecular
fraction. The two different regimes are described in terms of quantum
fluctuations: a linear power-law, G / �, is obtained when the initial molecular
fraction is smaller than the 1/N quantum fluctuations, and G / �1=3 when it is
larger.

1. Introduction

Feshbach resonances have been the driving force behind many of the most exciting
experimental achievements in ultra-cold atomic physics in recent years. They are not
only a tool for altering the strength and sign of the interaction energy of atoms, they
also provide a convenient method for converting atom pairs into molecules, and
vice versa. A magnetic Feshbach resonance is a collisional resonance involving pairs
of free atoms in the presence of a magnetic field and a bound diatomic molecule state
on a different (closed) potential energy surface than the incident (entrance) potential
energy surface. The difference in the magnetic moments of the atoms correlating
asymptotically at large internuclear distance to the two potential energy surfaces
allows the Feshbach resonance to be tuned by changing the magnetic field strength.
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Sweeping the magnetic field as a function of time, so the bound state on the
closed channel passes through threshold for the incident open channel from
above, can produce bound molecules. This technique for producing molecules
from atomic pairs has proved to be extremely effective in converting degenerate
fermionic atomic gases containing two different internal spin states to bosonic dimer
molecules [1–4]. The reason why fermionic atoms are better candidates than bosonic
atoms for such Feshbach sweep experiments is the relatively long lifetimes of the
resulting bosonic molecules. The long lifetime of the molecules is due to the Pauli
blocking effect which greatly reduces collisions between the molecules consisting of
fermionic atoms and other fermionic atoms in the gas [5].

This paper focuses on the molecular production efficiency of such adiabatic
Feshbach sweep experiments. We determine the functional dependence of the
remaining atomic fraction G on the Feshbach sweep rate �. We follow the ideas
presented in our paper [6], extending the calculations, and presenting a more detailed
account of the theoretical considerations for treating the dynamics of ultra-cold
Feshbach sweep experiments.

In the fermionic Feshbach sweep experiments [1–4], the Fermi energy is the
smallest energy scale in the system. Hence, we treat the fermions theoretically as
occupying the lowest possible many-body state consistent with symmetry considera-
tions arising from their method of preparation, i.e. we assume that the quantum states
are filled up to the Fermi energy in a fashion consistent with the symmetry properties
of the gas. In this sense, the gas can be thought of as a zero temperature gas.

For a single pair of fermionic atoms in a Feshbach sweep experiment,
the Landau–Zener (LZ) model [7] is the paradigm for explaining how transitions
occur. Theoretical interpretation of experimental results for the molecular
production efficiency in Feshbach sweep experiments in a gas have been based
on Landau–Zener theory [8]. Experimental molecular efficiency data has been fit by
an exponential form. Figure 1 shows the experimental data (black squares) of [2]
fit by an exponential function (dashed curve), G ¼ 0:479 exp ð��=1:3Þ þ 0:521, as
suggested in [2]. However, the data can be fit to the same level of accuracy by
a power-law dependence (green curve). Note that the original experimental data
saturated at a remnant of 1=2 contrary to the expected LZ behaviour. This
discrepancy has been previously explained [9] employing symmetry arguments
appropriate for the method of preparation of the initial state of the gas before the
Feshbach sweep. Here we describe how the LZ theory fails for a degenerate quantum
gas of fermionic atoms when the number of atoms is large and the power-law
dependence of figure 1 emerges. We also predict two different power-law behaviours,
G / � and G / �1=3, depending on the initial state of the system prior to the
Feshbach sweep.

The paper is organized as follows. In section 2 we introduce the model, the
atom–molecule Feshbach Hamiltonian and the main approximations used.
In section 3 we discuss the mean-field approximation, the power-law dependences
obtained and the role of quantum fluctuations which lead to the linear dependence
of the molecular production efficiency on the sweep rate. Finally, in section 5 we
summarize our work, comparing it with other theoretical studies which have
obtained similar power-law dependences.

698 Y. B. Band et al.
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2. The model

Whereas the experimental findings for molecular production in broad Feshbach
resonances that are swept with a very slow sweep rate [3, 4] are well explained
employing a thermodynamic model wherein thermodynamic equilibrium is assumed,
the narrow 6Li resonance that is traversed with sweep rates that are much more rapid
is not expected to fit such a description. For the experiment performed by Strecker
et al. on the narrow 6Li Feshbach resonance [2], we expect that there is a wide range
where atoms and molecules coexist, forming a coherent state. We consider the
temperature equal to the zero limit to explain the experimental data. The sweep
rate in the above experiment is considered to be adiabatic with respect to both the
many-body state as well as the single-particle timescales, allowing us to consider the
collisionless regime in which inelastic collisions can be ignored. At low temperatures
we assume a single bosonic mode Hamiltonian [10–16] because of the Cooper
instability which singles out the zero momentum mode of the molecules produced.
Thus, we take the Hamiltonian to be

H ¼
X
k,�

�kc
y
k,�ck,� þ EðtÞb

y
0 b0 þ g

X
k

ck,"c�k,#b0
y
þH:c:

 !
, ð1Þ

where �k ¼ �h2k2=2m is the kinetic energy of an atom with mass m and g is the
atom–molecule coupling strength. The molecular energy EðtÞ ¼ �t is linearly swept
at a rate � through resonance to induce adiabatic conversion of fermi atoms to

Figure 1. Fraction of remnant atoms, G, vs. inverse ramp speed 1= _B across the 543G
resonance of 6Li. The experimental data (black squares) of [2], which saturates at a remnant
fraction of 1=2 [9], and the mean-field calculations obey a linear dependence on sweep
rate beyond 0.5msG�1. g2=�N is multiplied by 0.5msG�1 to scale the abscissa for the
calculated results. Also shown as a dashed line is the best exponential fit to the data,
� ¼ 0:479 expð��=1:3Þ þ 0:521 as suggested in [2]. (The colour version of this figure is included
in the online version of the journal.)
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bose molecules. The annihilation operators for the atoms, ck,�, obey fermionic anti-
commutation relations, whereas the molecule annihilation operator b0 obeys a
bosonic commutation relation.

One can also further simplify the Hamiltonian by neglecting the fermionic
dispersion. This approximation has been commonly used [8, 11] and accounts for
the use of a simple two-level LZ model, as opposed to a multilevel one, for such
systems. To justify this assumption we have conducted exact numerical simulations
to determine the effect of fermionic dispersion on the adiabatic conversion efficiency.
Figure 2 shows exact numerical results for the adiabatic conversion of five atom pairs
into molecules, for different values of the atomic level spacing (and hence of the
Fermi energy EF). It demonstrates that the final adiabatic conversion efficiency is
completely insensitive to the details of the atomic dispersion. It is evident that, while
the exact dynamics depends on EF, and the levels are sequentially crossed as a
function of time as the bound state crosses the level energies, the same final efficiency
is reached regardless of the atomic motional timescale (i.e. regardless of level
spacing). In particular, the figure shows that in the limit as � ! 0 it is possible to
convert all atom pairs into molecules. This is a unique feature of the nonlinear
parametric coupling between atoms and molecules, which should be contrasted with
a marginal conversion efficiency expected for linear coupling in the multi-level LZ
model.

Employing the degenerate model with �k ¼ � for all k [14–16], it is convenient to
define the model in terms of the following lowering and raising operators [15, 17]:

J � ¼
b0
yP

k ck,"c�k,#

ðN=2Þ3=2
, Jþ ¼

P
k c

y
�k,#c

y
k,"b0

ðN=2Þ3=2
, J z ¼

P
k,� c

y
k,�ck,� � 2b0

yb0

N
,

ð2Þ

where N ¼ 2b0
yb0 þ

P
k,� c

y
k,�ck,� is the conserved total number of particles. It is

important to note that J �,Jþ,J z do not span SU(2), since the commutator
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Figure 2. Many-body collective dynamics of adiabatic passage from a fermionic atomic gas
into a molecular Bose–Einstein condensate (BEC) for five pairs of fermionic atoms. (a) Sweep
rate � ¼ 2g2N. (b) Sweep rate � ¼ g2N=4. Overall efficiency is independent of atomic
dispersion in both (a) and (b). (The colour version of this figure is included in the online
version of the journal.)
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½J þ,J�� yields a quadratic polynomial in J z, despite the fact that the commutators

½J þ,J z� and ½J �,J z� have the right commutation relations. The operators

J x ¼ Jþ þ J� and J y ¼ �iðJ þ � J �Þ can also be defined. Up to a c-number

term, Hamiltonian (1) takes the form

H ¼
N

2
�ðtÞJ z þ g

N1=2

2
J x

� �
, ð3Þ

where �ðtÞ ¼ 2�� EðtÞ. Defining a rescaled time � ¼ N1=2gt and assuming a filled
fermi sea, we obtain the Heisenberg equations of motion for the association of a

quantum-degenerate gas of fermions,

d

d�
J x ¼ �ð�ÞJ y,

d

d�
J y ¼ ��ð�ÞJ x þ

3ð21=2Þ

4
J z � 1ð Þ J z þ

1

3

� �
�
21=2

N
1þ J zð Þ,

d

d�
J z ¼ 21=2J y,

ð4Þ

which depend on the single parameter �ð�Þ ¼ �ðtÞ=N1=2g ¼ ð�=g2NÞ�. It is interesting
to note that exactly these equations of motion are obtained for the two-mode atom–

molecule BEC [17] where, for the bosonic case, raising and lowering operators are

defined as

J� ¼
b0
ya1a2

ðN=2Þ3=2
, Jþ ¼

a
y
2 a

y
1 b0

ðN=2Þ3=2
, J z ¼

2b0
yb0 �

P
k,� a

y
k,�ak,�

N
, ð5Þ

where a1 and a2 are bosonic annihilation operators obeying bosonic commutation
relations. In these definitions, the sign of the operator J z has been reversed relative

to equation (2), and therefore this maps fermionic association to bosonic dissocia-

tion. This provides another perspective on the recently observed mapping between

the two systems [14–16].

3. Mean-field approximation and the effects of fluctuations

The mean-field limit of equations (4) is given by replacing J x, J y and J z by their

expectation values u, v and w which correspond to the real and imaginary parts of the

atom–molecule coherence and the atom–molecule population imbalance, respect-

ively. Since quantum fluctuations in J z are of order 1/N, it is also consistent to omit

the quantum noise term 21=2ð1þ J zÞ=N as long as J z is of order 1. For small w

however, when the molecular population is of the order of its quantum fluctuations,

this quantum term becomes dominant and will have a significant effect on sweep

efficiency, as will be shown below.

Adiabatic passage through a Feshbach resonance in a degenerate quantum gas 701
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In the classical field limit, the equations of motion

d

d�
u ¼ �ð�Þv,

d

d�
v ¼ ��ð�Þuþ

3ð21=2Þ

4
w� 1ð Þ wþ

1

3

� �
,

d

d�
w ¼ 21=2v,

ð6Þ

depict the motion of a generalized Bloch vector on a two-dimensional surface
corresponding to the conservation of single-pair atom–molecule coherence, in
analogy to the motion of the Bloch vector on the Bloch sphere for the paradigm
two-level system.

So far, we have neglected the effect of quantum fluctuations, which may be
partially accounted for by the c-number limit of the source term ð21=2=NÞð1þ J zÞ in
equations (4). As a result, we found that _w0 does not vanish as w0 approaches 1.
Consequently, the remaining atomic population is expected to scale as the cubic root
of the sweep rate if the initial average molecular fraction is larger than the quantum
noise. However, starting purely with fermion atoms (or with molecules made of
bosonic atoms), corresponding to an unstable fixed point of the classical phase space,
fluctuations will serve to trigger the association process and will thus initially
dominate the conversion dynamics.

In order to verify that such quantum fluctuations can be accurately reproduced
by a ‘classical’ noise term near w¼ 1, we compare the onset of instability from exact
many-body calculations to the onset of mean-field instability according to the revised
mean-field equations.

d

d�
u ¼ �ð�Þv,

d

d�
v ¼ ��ð�Þuþ

3ð21=2Þ

4
w� 1ð Þ wþ

1

3

� �
þ
21=2

N
ð1þ wÞ,

d

d�
w ¼ 21=2v,

ð7Þ

where we have retained the Oð1=NÞ noise term ð21=2=NÞð1þ wÞ. We have checked to
make sure that there is excellent agreement in the early-time dynamics, indicating
that the mean-field noise term gives the correct behaviour near the instability point.

We have analysed the dynamics of the mean-field treatment using action-angle
variables and direct numerical simulation [6]. This analysis shows that equations (6)
yields the following dependence of the remnant fraction of atoms as a function of
sweep rate,

G � 1� wðt ! 1Þ / �1=3, ð8Þ

whereas equations (7) yields

G / �: ð9Þ

702 Y. B. Band et al.
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Equations (8) and (9) constitute the main results of this work. We predict that the
remnant atomic fraction in adiabatic Feshbach sweep experiments will scale as a
power law with sweep rate due to the curve crossing in the nonlinear case. When the
system is allowed to go near the critical point (i.e. when 1� w0ðtiÞ � 1=N) quantum
fluctuations are the major source of non-adiabatic corrections, leading to a linear
dependence of the remnant atomic fraction on the sweep rate. We note that a similar
linear dependence was predicted for adiabatic passage from bosonic atoms into a
molecular BEC [18]. When the the initial state is such that it has already a large
molecular population (i.e. for 1� w0ðtiÞ � 1=N) and fluctuations can be neglected,
we obtain a cubic-root dependence of the the final atomic fraction on sweep rate.

4. Numerical many-body results

To confirm the predictions of section 3, we carried out exact many-body numerical
calculation for particle numbers in the range 2 � N � 800, by Fock-space represen-
tation of the operators J i and direct propagation of the many-body equations (4),
according to the methodology of [14]. Figure 3 shows G versus dimensionless inverse
sweep rate g2=�N. The exact calculations are compared with a mean-field curve (solid
green line), computed numerically from the mean-field equations (6). The log–log
plot highlights the mean-field power-law dependence, obtained in the slow ramp
regime � < g2N, whereas the log–linear insert plot demonstrates exponential behav-
iour. For a single pair of particles, N¼ 2, the quantum association problem is

−2 −1 0 1 2 3 4
−5

−4

−3

−2

−1

0

log (g2 N/α)

g2 N/α)

lo
g 

Γ

lo
g 

Γ

0 2 4 6 8
15

10

5

0

N = 2
N = 4
N = 10
N = 100

N = 200
N = 400
N = 600
N = 800
MFT

Figure 3. Many-body calculations for the fraction of remnant atoms, G, Vs.
dimensionless inverse sweep rate for various particle numbers in the range N¼ 2 to 800.
The many-body results for a large number of particles converge to the mean-field results (solid
green line) computed numerically from the mean-field limit of equations (4). (The colour
version of this figure is included in the online version of the journal.)
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formally identical to the linear LZ paradigm, leading to an exponential dependence
of G on sweep rate (see insert of figure 1). However, as the number of particles
increases, many-body effects come into play, and there is a smooth transition to a
power-law behaviour in the slow ramp regime � < g2N. The many-body calculations
converge to the mean-field limit, corresponding to a linear dependence of G on �,
as predicted in equation (9).

The results of figure 3 prove the convergence of many-body calculations to the
mean-field theory used as a basis to our analysis in previous sections. Having
established the validity of this classical field theory, and numerically confirmed the
appearance of power-law behaviour, we return to the experimental results of [2]
shown in figure 1. Comparison of our mean-field numerical calculation with the
experimental data (red squares in figure 1) clearly shows good agreement. However,
since an equally good exponential fit can be found [2], as shown in figure 1, current
experimental data does not serve to determine which of the alternative theories is
more appropriate. We have obtained similar agreement with the experimental data
of [1], but data scatter and error bars are again too large to conclusively resolve
power laws from exponentials. Further precise experimental data for slow ramp
speeds and different particle numbers will be required to verify or to refute our
theory.

5. Summary and discussion

In summary, we have shown that nonlinear many-body effects can play a significant
role in the atom–molecule conversion process for degenerate fermionic atomic gases.
The many-body nature of the dynamics (and its resulting nonlinear dynamics
manifestation in mean-field dynamics) modifies the LZ exponential dependence on
sweep rate, turning the functional behaviour on sweep rate into a power law. Though
the experimental data was originally fit with LZ exponential behaviour [2], we have
demonstrated that it can be fit just as well with a power-law dependence. Hopefully,
future experimental work will be able to determine which fit is best at low
temperatures; a larger range of sweep rates will be necessary for this purpose.

The realization that many-body effects can modify LZ behaviour, producing
power law behaviour has been predicted by several other groups in different contexts.
For the theory of Josephson tunneling [19, 20] as well as for a BEC in a double
potential well or in an optical lattice, power-law behaviour (a 3=4 power) was
predicted by Liu et al. [19]. In this paper, as well as in our previous work [6] we
employed the theoretical techniques developed by Liu et al., modifying them for the
case of a non-spherical two-dimensional phase space surface. The bosonic photo-
association problem was addressed by Ishkhanyan et al. [18]; this is simply the
bosonic analogue of the fermionic pairing we addressed in this paper. Given the
mapping between the bosonic disassociation to fermionic association [14–16], it is
not surprising that Ishkhanyan et al. obtained a linear power law result. However the
semiclassical approximation method they used to solve the problem required them to
assume that the system starts as all atoms at large negative detuning. Assuming that
the initial condition is all atoms inherently includes the quantum fluctuation resulting

704 Y. B. Band et al.
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in only the linear dependence. In such a method it is impossible to separate the effects
of quantum fluctuations. Altman and Vishwanath [21] studied rapid sweeps across a
Feshbach resonance; they called this a dynamic projection on Feshbach molecules.
They state that a fast sweep can be approximated by a sudden part followed by an
adiabatic time evolution part. In their paper [21] they obtain the same linear and 1=3
power laws and use a spatial argument to explain them. Their argument assumes that
at some stage that the sweep becomes fast and then atom pairs are projected onto
molecules. The power law results from the spatial overlap of a molecular wave
function with that of a pair of atoms. For a Cooper pair, this leads to the 1=3 power
law due to the specific spatial form of the Cooper pair, whereas the projection of a
random pair of atoms onto a molecule gives a linear dependence. Finally in a recent
paper, Barankov and Levitov [22] study the same problem of dynamical atom/
molecule projection, for fermion pairing into bosonic molecules using a different
method (a variant of the Wiener–Hopf method) and obtained the same power laws.
With respect to all these approaches we should stress our new results. We have
demonstrated how exponential LZ behaviour, applicable to two atoms, is trans-
formed into a power-law dependence (see figure 3) as the number of atoms increases
(for a coherent zero temperature gas). We have shown numerically that the efficiency
of molecular production is independent of fermionic dispersion (see figure 2).
Our simple mean-field theory allowed us to discriminate between the linear and
one third power-law dependencies and enabled us to give a clear explanation of how
these results depend on quantum fluctuations. In showing that the fermionic
equations of motion (4) are the same for operators built for the bosonic case (5),
we have explicitly demonstrated the mapping between fermion association and
bosonic dissociation on the operator level. Finally, as mentioned above, we fit
experimental low temperature Feshbach sweep data with a power-law dependence
(see figure 1).
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